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Abstract. We study the problem of computing the reachable princi-
pals of the simulation preorder and the reachable blocks of simulation
equivalence. Following a theoretical investigation of this problem, which
highlights a sharp contrast with the already settled case of bisimula-
tion, we design algorithms to solve this problem by leveraging the idea
of interleaving reachability and simulation computation while possibly
avoiding the computation of all the reachable states or the whole sim-
ulation preorder. In particular, we put forward a symbolic algorithm
processing state partitions and, in turn, relations between their blocks,
which is suited for processing infinite-state systems.
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1 Introduction

Given a possibly infinite labeled transition system S, we study the problem of
computing the reachable principals1 of the greatest simulation preorder Rsim,
and the reachable blocks of the induced simulation partition Psim. By reachable,
we mean the principals Rsim(x) of the simulation preorder (resp., blocks Psim(x)
of the simulation partition) that intersect the system’s reachable states, therefore
ignoring unreachable principals and blocks, which are typically of no/negligible
interest. A naïve solution to this problem—that we call the reachable simulation
problem—would be: first, compute the simulation preorder (partition), and then,
filter out the principals (blocks) containing no reachable states. However, this
requires the computation of the entire simulation preorder and, possibly, of all
the reachable states. Here, we present a completely different solution relying on
a convoluted interleaving of reachability and simulation computation, possibly
avoiding the computation of all the reachable states and of the whole Rsim.
1 The term principal comes from the well-known notion of principal ideal [13, Chapter

I, sect. 3.4]. Detailed definitions are given in Section 3.



2 P. Ganty, N. Manini, F. Ranzato

Contributions. We study the reachable simulation problem by showing, through
an unsolvability proof (cf. Section 4), that there is a stark contrast w.r.t. the
problem of computing the reachable blocks of the bisimulation partition, settled
by Lee and Yannakakis [23] in STOC 1992. In Section 5, we put forward an
algorithm computing the reachable part of the simulation preorder, and yielding
an over-approximation for the partition. We prove correctness and termination
on finite state systems, and extend correctness (under simple assumptions) to
infinite state systems. Moreover, we provide examples showing termination on
some infinite state systems2. Section 6 introduces the so-called 2PR (2 state Par-
titions and a Relation among them) triples which we use to design a symbolic
algorithm for the reachable simulation problem. Besides inheriting the correct-
ness guarantees of our first algorithm, we show that the 2PR-based algorithm
terminates faster and more often for infinite state systems. In particular, we
prove that the 2PR-based algorithm terminates on all systems having a finite
bisimulation partition or when a local finiteness condition is satisfied. These
termination results come with a runtime upper bound that is quadratic in the
number of blocks of (a portion of) the bisimulation partition. As an auxiliary
contribution, we define partitions induced by arbitrary relations (not limited to
preorders or equivalences), generalizing previous definitions.

Applications. Computing reachable simulation principals and blocks has several
practical applications. A noteworthy use case of the reachable principals of the
simulation preorder is given by the determinization algorithms Subset(f) and
Transset(f) for nondeterministic finite automata designed by van Glabbeek
and Ploeger [32]. Using the simulation preorder computationally enhances these
procedures (f is picked to account for the simulation preorder). In particular,
only the reachable principals are used since the automaton determinization pro-
ceeds forward starting from the initial states. It turns out that these simulation-
based algorithms compute smaller deterministic automata compared to their
plain versions [32]. In a different context, the reachable blocks of the simulation
partition define the states of the reduced quotiented system. The question of
computing the transitions between the blocks of the reduced system has been
investigated in depth by Bustan and Grumberg [6], who explore the difference
and trade-off of the ∃∃ (i.e., B �∃∃ B′ iff ∃s ∈ B. ∃s′ ∈ B′. s � s′) and ∀∃
definitions (i.e., B �∀∃ B′ iff ∀s ∈ B. ∃s′ ∈ B′. s � s′).

Furthermore, solutions to the reachable simulation problem have potential
applications in program and hybrid systems verification, as past research [16,
25, 26, 33] has leveraged solutions to the reachable bisimulation problem.

Related Work. The closest work to ours is that by Lee and Yannakakis [23],
who first designed an interleaving of reachability and bisimulation computa-
tion, here referred to as the LY algorithm. Their work is highly cited and has
been applied and revisited several times (e.g. [1, 10]), nevertheless, it remains

2 As shown in Section 4, an algorithm terminating on all infinite state systems cannot
exist.
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an elaborate algorithm with hidden subtleties. Let us point out that we were
not able to find, for some results claimed in the original paper [23], any proof
argument (either searching online or contacting authors). To put the LY al-
gorithm in its historical context, it was one of several algorithms to compute
the reachable part of the bisimulation-based quotiented system [4, 5, 23]. These
algorithms share the interleaving of the bisimulation computation—a partition
refinement algorithm—with the computation determining block reachability. In-
terleaving reachability and bisimulation computation is remarkably interesting
because the resulting algorithms terminate at least as often (possibly more often)
as the naïve procedure consisting in first computing the bisimulation and next
determining its reachable blocks. Later on, Alur and Henzinger revisited these
algorithms for reachable bisimulation in their unpublished book on computer-
aided verification [1, Chapter 4], while Fisler and Vardi conducted a theoretical
and experimental evaluation of the LY algorithm [10]. We also mention that al-
gorithms combining reachability and bisimulation computation inspired by the
LY algorithm have been used in several different contexts ranging from program
analysis [16, 26] to hybrid systems verification, where [25] employs a LY-like
approach for language preserving minimization for controller design.

We focus on simulation since it provides a better state space reduction
than bisimulation, while retaining enough precision for checking all linear tem-
poral logic formulas or branching temporal logic formulas without quantifier
switches [2, 6, 8, 14, 15, 24]. Moreover, infinite state systems like 2D rectangular
automata may have infinite bisimilarity quotients, yet they always have finite
similarity quotients (see [17, 18]). There is a large body of work [3, 7, 9, 11, 12,
17, 27, 28, 29, 30, 31] on efficiently computing the simulation preorder, through
both explicit or symbolic algorithms. Kucera and Mayr [21, 22] compared sim-
ulation and bisimulation equivalence using their computational complexity, and
justified the claim that similarity is computationally harder than bisimilarity.

To the best of our knowledge, no previous work considered the problem of
computing the reachable principals of the simulation preorder or the reachable
blocks of the simulation partition. Due to lack of space, some material (e.g.,
proofs) is omitted.

2 Motivating Example

We introduce an example showing the challenges of the reachable simulation
problem and some intuitive explanations on our solution. Consider the family of
infinite transition systems parameterized over an integer k ≥ 0 depicted below.

0 1 . . .

0′ . . . k′

. . . −2 −1

The set of states is Z∪{0′, . . . , k′}, and the transition relation is given by the ar-
rows in the diagram. The initial state is 0′, denoted by the incoming blue arrow.
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Consider the initial partition of states given by the three blocks {n ∈ Z | n < 0},
{n ∈ Z | n ≥ 0} and {n′ | 0 ≤ n ≤ k}, depicted as solid boxes. Let us re-
mark three observations about this family of transition systems: (1) there are
infinitely many reachable states; (2) there are infinitely many simulation equiv-
alence classes, depicted by dotted lines splitting the boxes; and (3) yet, there
are finitely many simulation equivalence classes that are reachable, i.e., finitely
many dotted blocks in the diagram include reachable states. In this paper, we
tackle the challenge of effectively computing information such as in (3). Because
of points (1) and (2), we must rule out naïve solutions that would include a com-
putation of all the reachable states (a simple reachability computation would not
terminate) or refining the blocks of the initial partition to the simulation parti-
tion (a simulation algorithm would not terminate). Yet, in this work, we define
algorithms alternating bounded state space exploration and partition refinement.
Such algorithms can indeed effectively compute information such as (3), while
avoiding the pitfalls of computing all the reachable states or computing the full
simulation partition. Section 5.1 shows a run of our algorithm on this example.

3 Background

Preorders and Partitions. Given a (possibly infinite) set Σ, we denote with ℘(Σ)
the powerset of Σ, and with Rel(Σ) ≜ ℘(Σ × Σ) the set of relations over Σ.
If R ∈ Rel(Σ) then: for S ⊆ Σ, R(S) ≜ {s′ ∈ Σ | ∃s ∈ S. (s, s′) ∈ R}; for
s ∈ Σ, the set R(s) ≜ R({s}) is the principal of s; Rel(Σ) ∋ R−1 ≜ {(y, x) ∈
Σ × Σ | (x, y) ∈ R} is the converse relation of R. Moreover, for a given set
S ⊆ Σ, we denote by RS ≜ {R(x) ∈ ℘(Σ) | x ∈ Σ, R(x) ∩ S ̸= ∅} the set
of principals of R that intersect S. A relation R ∈ Rel(Σ) is a preorder if it is
reflexive and transitive, and PreO(Σ) ≜ {R ∈ Rel(Σ) | R is a preorder} denotes
the set of preorders on Σ. Moreover, R ∈ Rel(Σ) is an equivalence on Σ if it is
a symmetric preorder. A partition of Σ consists of pairwise disjoint nonempty
subsets of Σ, called blocks, whose union is Σ, and Part(Σ) denotes the set of
partitions of Σ. We consider finite partitions (i.e., consisting of finitely many
blocks), unless otherwise specified. It is well known that a partition defines an
equivalence relation, and vice versa, where blocks of the partition and equivalence
classes coincide. Hence, given a partition P ∈ Part(Σ), P (s), P (S) and PS (for
S ⊆ Σ, s ∈ Σ) are well-defined thanks to the equivalence defined by P . In
particular, P (s) is the block including s, P (S) = ∪{P (s) ∈ P | s ∈ S}, and
PS = {P (s) ∈ P | s ∈ S} ∈ Part(P (S)). Given two partitions P,Q ∈ Part(Σ),
P is coarser than Q, denoted by Q ⪯ P , if the equivalence relation underlying
Q is a subset of the underlying equivalence of P . More in general, any relation
R ∈ Rel(Σ) (not necessarily an equivalence or a preorder) induces a partition of
Σ defined as {y ∈ Σ | R(y) = R(x)}x∈Σ . Two elements belong to the same block
of the induced partition if their image by R coincide. This general definition of
partition induced by a relation has the following desirable properties. When R
is an equivalence relation then the blocks of its induced partition coincide with
the equivalence classes of R. Moreover, if R is a preorder then the blocks of
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its induced partition coincide with the equivalence classes of the equivalence
relation given by R ∩ R−1. These induced partitions will be a key ingredient of
our approach.

Simulation and Bisimulation. Let G = (Σ, I, L,�) be a (labeled) transition
system (TS), where Σ is a (possibly infinite yet countable) set of states, I ⊆ Σ
are the initial states, L is a finite set of action labels, and � ⊆ Σ × L × Σ is
the labeled transition relation, where we denote (x, a, y) ∈ � as x

a→ y. When
L is a singleton set or when the label is unimportant we simply write x � y.
This comes handy in our examples where we assume L is a singleton. Given
a ∈ L, posta : ℘(Σ) � ℘(Σ) denotes the usual successor transformer posta(X) ≜
{y ∈ Σ | ∃x ∈ X.x

a→ y}, and, dually, prea : ℘(Σ) � ℘(Σ) is the predecessor
prea(Y ) ≜ {x ∈ Σ | ∃y ∈ Y. x

a→ y}. Moreover, we define post : ℘(Σ) � ℘(Σ) as
post(X) ≜ ∪a∈L posta(X) and, symmetrically, pre : ℘(Σ) � ℘(Σ) as pre(X) ≜
∪a∈L prea(X). Thus, post∗(I) ≜ ∪n∈N postn(I) is the set of reachable states.

Given an (initial) preorder Ri ∈ PreO(Σ), a relation R ∈ Rel(Σ) is a simula-
tion on G w.r.t. Ri if: (1) R ⊆ Ri; (2) (s, t) ∈ R and s

a→ s′ imply ∃t′. t a→ t′ and
(s′, t′) ∈ R. Given two principals R(s), R(s′) such that s

a→ s′, R(s) is a-stable
(or simply stable) w.r.t. R(s′) when R(s) ⊆ prea(R(s′)), otherwise R(s) is called
a-unstable (or simply unstable) w.r.t. R(s′), and, in this case, R(s′) can refine
R(s) to R(s) ∩ prea(R(s′)). As a consequence, point (2) in the above simulation
definition is equivalent to: (2′) for every transition s

a→ s′ in G, R(s) is a-stable
w.r.t. R(s′). The greatest (w.r.t. ⊆) simulation relation on G exists and turns
out to be a preorder called the simulation preorder of G w.r.t. Ri, denoted by
Rsim ∈ PreO(Σ). We denote by Psim ∈ Part(Σ) the partition induced by Rsim

and call it the simulation partition3 (or similarity). A relation R ∈ Rel(Σ) is a
bisimulation on G w.r.t. an (initial) partition Pi ∈ Part(Σ) if both R and R−1

are simulations on G w.r.t. Pi. The greatest (w.r.t. ⊆) bisimulation relation on
G w.r.t. Pi exists, and turns out to be an equivalence called bisimulation equiv-
alence (or bisimilarity), denoted by Rbis. The partition Pbis ∈ Part(Σ) induced
by Rbis is called the bisimulation partition.

Remark 3.1 (On the Initial Preorder). We point out that the role of the initial
preorder Ri is that of having some a priori simulation information (e.g., accept-
ing states in a finite state automaton simulate non-accepting ones but not the
other way around [32]). For the bisimulation case, such a priori information is
conveyed by an equivalence—e.g. specified by a labelling over the state space like
in Kripke structures—and the natural generalization of the initial equivalence
to the simulation case is an initial preorder. Nevertheless, as mentioned above,
an equivalence relation can be used as Ri too, since it is a particular case of a
preorder.

3 Observe that since Rsim is a preorder, we have that Psim ∈ Part(Σ) coincides with
the equivalence classes of the similarity equivalence Rsim ∩ (Rsim)−1.
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4 The Reachable Simulation Problem

We formally define the problem investigated in this work, which extends in a
natural way the reachable bisimulation problem tackled by Lee and Yannakakis
in [23].

Problem 4.1 (The Reachable Simulation Problem).
Given: A labeled transition system G = (Σ, I, L,�) and Ri ∈ PreO(Σ).
Compute: The reachable principals of Rsim and the reachable blocks of Psim.

A first challenge we face is related to the notion of reachability. The notion
of reachable blocks (rb) for any partition P ∈ Part(Σ), such as Psim, is (triv-
ially) defined as the set of blocks containing at least one reachable state, that is
P post∗(I). Thus, the following equality holds:

P post∗(I) = {B ∈ P | B ∩ post∗(I) ̸= ∅} = {P (s) ∈ P | s ∈ post∗(I)} . (rb)

Moving from bisimulation to simulation, (rb) can be generalized to any of the two
following definitions of reachable principal (rp) of a reflexive relation R ∈ Rel(Σ),
which can both be deemed adequate:

Rpost∗(I) = {R(s) ∈ ℘(Σ) | s ∈ Σ, R(s) ∩ post∗(I) ̸= ∅} , (rp1)

R
post∗(I)
alt ≜ {R(s) ∈ ℘(Σ) | s ∈ post∗(I)} . (rp2)

Clearly, when R is an equivalence relation, (rp1) and (rp2) coincide and boil
down to (rb). In general, only R

post∗(I)
alt ⊆ Rpost∗(I) holds, and, moreover, the

inclusion (Rsim)
post∗(I)
alt ⊊ (Rsim)

post∗(I) can hold strictly4, as shown next.

Example 4.2. Consider the system depicted below, its initial preorder Ri =
{0, 1} × {0, 1}, and the block induced by Ri, represented as a box.

1 0

The simulation preorder w.r.t. Ri is Rsim(0) = {0, 1}, Rsim(1) = {1}, and a dot-
ted line delimits the blocks of Psim. Thus, since post∗(I) = {1}, we get that the
reachable principals as per (rp2) are the singleton {Rsim(1)}, while the reachable
principals as per (rp1) are {Rsim(0), Rsim(1)}. ⋄

Unsolvability. Problem 4.1 is, in general, unsolvable (i.e., no algorithm exists for
computing the reachable principals and blocks of, resp., Rsim and Psim), even
under the assumption that Psim is a finite partition. In particular, we observe that
the subtask of Problem 4.1 involving the reachable blocks of Psim is unsolvable.
This result shows a difference with the problem of computing reachable blocks
of Pbis, which Lee and Yannakakis [23] proved solvable for finite bisimulations.

4 For some systems, (rp1) could even be infinite, and (rp2) be a finite set.
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Theorem 4.3 (Unsolvability of the Reachable Simulation Problem).
Problem 4.1 is unsolvable, even under the assumption that Psim is a finite par-
tition.

Theorem 4.3 holds since solvability of Problem 4.1 would imply decidability
of the well-known undecidable halting problem for 2-counter machines. In fact,
with a few termination-preserving transforms, we can characterize the halting
states for a 2-CM as a block of Psim. It is worth noting that the halting prob-
lem for 2-counter machines is commonly used for proving related (yet different)
undecidability results about simulation [20].

Remarks for Finite State Systems. We observe a further difference between Prob-
lem 4.1 and the corresponding problem for bisimulation, over finite transition
systems. The reachability problem for blocks of both Pbis and Psim is trivially
decidable for finite systems, since we can simply compute independently post∗(I)
and Pbis or Psim, and, check whether post∗(I) ∩ B = ∅ holds for every block
B in Pbis or Psim. However, for the case of bisimulation, deciding reachability
of a block B ∈ Pbis can be done in O(|P post∗(I)

bis |) time by leveraging the defini-
tion of bisimulation: if x and y are bisimilar states, then x can reach B in one
transition iff y can, hence picking any single state per block of Pbis suffices. For
the simulation case, deciding the reachability of B ∈ Psim is more involved: as
the following example hints, to decide whether a block B ∈ Psim is reachable we
possibly have to check whether there is a path of arbitrary length (that is, in
O(|Σ|)) in the transition system reaching B, so that no bound on the number
of blocks of Psim applies.

Example 4.4. Let G1, G2 be the transition systems depicted below.

1 2 3 · · · n 0 G1

1 2 3 · · · n 0 G2

Blocks of states sharing the same principal in Ri = N × N are represented as
boxes, while dotted lines are used to delimit the blocks of Psim w.r.t. Ri. In
fact, we have that Rsim(0) = [0, n], and, for all k ∈ [1, n], Rsim(k) = [1, n], so
we have that Psim = {[0, 0], [1, n]} for G1 and G2. Observe that in G1 the block
[0, 0] ∈ Psim is reachable while in G2 the block [0, 0] ∈ Psim is unreachable. Hence,
to decide whether [0, 0] is reachable in these two systems, we have to detect that
0 is reachable in G1 and not in G2. However, this is not the case for bisimulation,
since it turns out that Pbis = {[k, k]}k=0,...,n for G1, while Pbis = Psim for G2. ⋄

5 A Reachable Simulation Algorithm

We define Algorithm 1 which, given a system G, a preorder Ri, and an initial
(possibly empty) set of reachable states σi, computes the reachable principals of
Rsim according to (rp1), and over-approximates the reachable blocks of Psim.
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Algorithm 1: Relation-based Algorithm
Input: TS G = (Σ, I, L,�), Ri ∈ PreO(Σ), an initial finite set σi ⊆ post∗(I).

1 Rel(Σ) ∋ R := Ri; ℘(Σ) ∋ σ := σi;
2 while true do

// Inv1: ∀x ∈ Σ.Rsim(x) ⊆ R(x) ⊆ Ri(x)
// Inv2: σi ⊆ σ ⊆ post∗(I) Inv3: ∀x ∈ Σ. x ∈ R(x)

3 U := {R(x) | R(x) ∩ σ = ∅, R(x) ∩ (I ∪ post(σ)) ̸= ∅};
4 V := {⟨a, x, x′⟩ ∈ L×Σ2 | R(x) ∩ σ ̸= ∅, x

a→ x′, R(x) ⊈ prea(R(x′))};
5 nif
6 (U ̸= ∅) −→ Search :
7 choose R(x) ∈ U, s ∈ R(x) ∩ (I ∪ post(σ));
8 σ := σ ∪ {s};
9 (V ̸= ∅) −→ Refine :

10 choose ⟨a, x, x′⟩ ∈ V ;
11 R(x) := R(x) ∩ prea(R(x′));
12 (U = ∅ ∧ V = ∅) −→ return ⟨R, σ⟩;

This algorithm maintains a relation R ∈ Rel(Σ) specified through its princi-
pals R(x) ∈ ℘(Σ), and a set σ ⊆ Σ of reachable states5, so that Rσ = {R(x) |
R(x) ∩ σ ̸= ∅} are the provably reachable principals of R. The algorithm com-
putes the set U of principals which can be added to Rσ and the set V of unstable
principal pairs. A principal R(x) is in U if it contains an initial state or a succes-
sor of a provably reachable state. A triple ⟨a, x, x′⟩ is in V if the principal R(x)
is provably reachable and it can be refined by a principal R(x′), i.e., x a→ x′ and
R(x) ⊈ prea(R(x′)). Algorithm 1 is presented in logical form, meaning that in
this pseudocode we do not require or provide a specific representation for the
transition system G or for the sets maintained by the algorithm, namely the
relation R, the provably reachable states of σ, and the sets U and V . Details on
the specific representations are given in Section 6.

Algorithm 1 either updates, in the Search block, the reachability information,
or stabilizes, in the Refine block, a pair of principals from V . The pseudocode of
Algorithm 1 uses a nondeterministic choice between guarded commands (nif).
We have three guarded commands: either the Search (lines 6–8) or the Refine
blocks (lines 9–11) are executed, or, at line 12, when the other guards are false,
the return statement is taken. Thus, every execution consists of an interleaving
of Search and Refine, possibly followed by a return. Observe that the guards are
such that when the algorithm terminates neither Search nor Refine are enabled.

A principal R(x) is refined at line 11 provided it is provably reachable. Upon
termination, the principals of Rσ and the principals of Rpost∗(I)

sim coincide (cf. (1.a)
of Theorem 5.3 below)6. However, R may well contain unstable principals, so
5 We distinguish the states of post∗(I) from those in its subset σ by referring to the

states in σ as provably reachable. We extend this notion to principals.
6 Note that line 11 might break transitivity of R. In fact, R is not guaranteed to be a

preorder during execution, and not even at termination.
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that, in general, R and Rsim do not coincide. Turning to the simulation parti-
tion we face a more complex situation. To start with, we provide an example
showing that the partition P induced by R is such that Pσ does not coincide
with P

post∗(I)
sim . In fact, Pσ might lack some of the blocks of P post∗(I)

sim .

Example 5.1. Consider the transition system depicted below, where Ri =
{(1, 1), (2, 1), (2, 2)} = Rsim, and σi = ∅.

1 2

We have that post∗(I) = {1, 2}, and the blocks induced by Ri coincide with
Psim = {{1}, {2}} and are depicted as boxes. Algorithm 1 on input Ri and
σi returns ⟨Rsim, {1}⟩. Therefore, it turns out that P

post∗(I)
sim = Psim and Pσ =

{{1}}, so that P
post∗(I)
sim ⊈ Pσ holds. ⋄

Algorithm 1 aims at populating σ with just enough states to correctly char-
acterize the reachable principals (i.e., achieving (1.a)), but such states are, in
general, not enough to intersect all the reachable blocks of Psim. However, σ
suffices to capture such blocks through a relaxation of the reachability notion
which, in turn, induces a degree of over-approximation. This relaxed definition
is given by {B ∈ P | R(B) ∩ σ ̸= ∅} as defined in (1.b). Observe that reachable
blocks are computed precisely: each block of P post∗(I)

sim is in P , but, in general,
not all blocks in P belong to Psim. Moreover, the following example shows that
the converse inclusion of (1.b) does not always hold.

Example 5.2. Consider the system depicted below with post∗(I) = {1}, Ri =
{1, 2} × {1, 2}, Rsim = {(1, 1), (2, 1), (2, 2)}, and Psim = {{1}, {2}}, where boxes
depict blocks induced by Ri and dotted lines delimit the blocks of Psim.

1 2

Algorithm 1 on input Ri and σi = ∅ outputs R = Rsim and σ = {1}. Thus, the
inclusion of (1.b) is strict since {{1}} ⊊ {{1}, {2}}. ⋄

On the other hand, this inclusion is not arbitrarily loose since a block B ∈ P
such that R(B) ∩ σ ̸= ∅ (cf. (1.b)) is guaranteed to be simulated by some
reachable state. Therefore, Rsim limits the magnitude of this over-approximation.

It turns out that Algorithm 1 is correct and terminates on finite state systems.

Theorem 5.3 (Correctness of Algorithm 1 for Finite Systems). Let
⟨R, σ⟩ ∈ Rel(Σ)× ℘(Σ) be the output of Algorithm 1 on input G with |Σ| ∈ N,
Ri ∈ PreO(Σ), and σi ⊆ post∗(I). Moreover, let P ∈ Part(Σ) be the partition
induced by R. Then:

R
post∗(I)
sim = Rσ, (1.a) P

post∗(I)
sim ⊆ {B ∈ P | R(B) ∩ σ ̸= ∅} . (1.b)

Theorem 5.4 (Termination of Algorithm 1). Let G = (Σ, I, L,�) with
|Σ| ∈ N, Ri ∈ PreO(Σ), and σi ⊆ post∗(I). Then, Algorithm 1 terminates on
input G, Ri, and σi.
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Correctness and Termination for Infinite State Systems. Theorem 5.3 is intro-
duced on finite systems for clarity reasons when formulating the proof. Neverthe-
less, the proof argument of Theorem 5.3 extends to infinite state systems—i.e.,
the condition |Σ| ∈ N can be removed from the hypotheses of the theorem—when
the following assumption holds.

Assumption 5.5 (ω-Convergence for Simulation Approximants). Given
a transition system G = (Σ, I, L,�), and an initial preorder Ri ∈ PreO(Σ), let
⪯0 ≜ Ri and ⪯n, for n > 0, be the strong simulation approximants as defined
in [19, Points (2) and (3) of Definition 30]. Then, the ω-Convergence assumption
holds iff ⪯ω = Rsim, where ω is the first limit ordinal.

Note that Assumption 5.5 holds at least on all finitely branching systems, as
stated in [19, Paragraph following Definition 30]. We can now formally state the
correctness result for Algorithm 1 (on infinite systems) as follows.

Theorem 5.6 (Correctness of Algorithm 1). Let ⟨R, σ⟩ ∈ Rel(Σ) × ℘(Σ)
be the output of Algorithm 1 on input G, Ri ∈ PreO(Σ) and σi ⊆ post∗(I).
Moreover, let P ∈ Part(Σ) be the partition induced by R. If Assumption 5.5
holds, then conditions (1.a) and (1.b) are satisfied.

Concerning termination, we point out that Algorithm 1 can terminate on
some infinite systems, such as the one of Section 2, and the following example.

Example 5.7. Consider the infinite transition system depicted below, where
Ri(0) = {0}, Ri(1) = {0, 1}, and for all n < 0, Ri(n) = ]−∞,−1]. As usual,
boxes denote the blocks induced by Ri.

0 1. . . −2 −1

The simulation preorder is therefore: Rsim(0) = {0}, Rsim(1) = {0, 1}, and
Rsim(n) = ]−∞, n] for each n < 0. Notice that Rsim has infinitely many prin-
cipals, and the corresponding blocks of Psim are delimited by dotted lines in
the above diagram. After two Search iterations of Algorithm 1 (on input Ri,
σi = ∅), we get σ = {0, 1}. At this point, V = ∅ and U = ∅ holds, and the
algorithm returns the correct result.

Consider instead the process of refining each principal Ri(x) such that Ri(x) ̸=
Rsim(x). This process, which converges to Rsim, cannot terminate after finitely
many steps since infinitely many principals would need to be refined. ⋄

5.1 Execution on the Motivating Example

Let us run Algorithm 1 on the motivating example of Section 2. By fixing k = 2
we obtain the infinite state transition system depicted below.

0 1 . . .

0′ 1′ 2′
. . . −2 −1
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The initial relation is given by Ri(x) = Z ∖ N for all x < 0, Ri(x) = N for all
x ≥ 0, and Ri(0

′) = Ri(1
′) = Ri(2

′) = {0′, 1′, 2′}. As usual, states sharing the
same principal in Ri are depicted in boxes, while dotted lines delimit the blocks
of Psim. The remaining input is set to σi = ∅.

1st iteration: At the beginning, U = {Ri(0
′)} = {{0′, 1′, 2′}}, since the prin-

cipals intersecting I = {0′} are those corresponding to states 0′, 1′ and 2′.
Moreover, since σ = ∅, we have that V = ∅ holds. Hence, the Search block is
executed and σ is updated: at line 8 we get σ = {0′}.
2nd iteration: Since σ = {0′}, we get U = {Ri(0)} = {N} because N∩post(σ) ̸=
∅. Moreover, V = {⟨a, 0′, 1′⟩, ⟨a, 1′, 2′⟩} since prea(Ri(1

′)) = prea(Ri(2
′)) =

{0′, 1′}, and Ri(0
′) = Ri(1

′) = {0′, 1′, 2′} ⊈ {0′, 1′}. Assume that Algorithm 1
nondeterministically executes a Search iteration, then it will update σ by using
the principal in U : at line 8 we get σ = {0′, 0}.
3rd iteration: We get U = ∅ since all the states reachable from σ are in
principals intersecting σ. Moreover, V is as in the previous iteration. Note that
Ri(0), which now intersects σ, does not induce new unstable triples in V . Assume
that Algorithm 1 picks ⟨a, 1′, 2′⟩ from V (picking the other element leads to the
same output), and executes the Refine block: at line 11 the relation is updated,
so that R(1′) = Ri(1

′) ∩ prea(Ri(2
′)) = {0′, 1′}.

4th iteration: Still, U = ∅, and V = {⟨a, 0′, 1′⟩}, since R(0′) = Ri(0
′) =

{0′, 1′, 2′} ⊈ prea(R(1′)) = {0′}. Therefore, the algorithm executes a Refine
step, and at line 11 we get R(0′) = {0′, 1′, 2′} ∩ {0′} = {0′}.
5th iteration: Again U = ∅ since σ = {0′, 0}, and for every x ∈ N ∪ {0′, 1′, 2′},
it holds R(x) ∩ σ ̸= ∅. Moreover, we have that V = ∅, since all the transitions
outgoing 0′, 1′, 2′ and all the states in N are stable. Therefore, Algorithm 1
returns σ = {0′, 0}, and R is as follows: R(0′) = {0′}, R(1′) = {0′, 1′}, and
R(x) = Ri(x) for every other state. Observe that |σ| = 2, independently of the
fixed parameter k. In fact, Algorithm 1 explores two reachable states (out of
infinitely many) which suffice to characterize all the reachable principals.

6 2PR Triples for Designing a Symbolic Algorithm

Symbolic approaches for simulation algorithms based on state partitions are ben-
eficial for algorithms manipulating infinite state systems, as shown by Henzinger
et al.’s [17] symbolic simulation algorithm for infinite graphs, and, in particu-
lar, hybrid automata. Symbolic approaches are also advantageous in terms of
space and time efficiency for finite state systems [7, 9, 27]. Accordingly, we in-
troduce 2-Partitions-Relation triples (2PR), generalizing the partition-relation
pairs used in the most efficient symbolic simulation algorithms [7, 11, 30] as
symbolic representation of a relation between states. We exploit here 2PRs to
design a symbolic version of Algorithm 1. The rationale behind the need for 2PRs
rather than partition-relation pairs, i.e. 1PR, has more to do with enhancing the
presentation and ease of understanding and less to do with limitations of 1PRs.

Definition 6.1 (2PR Triple). Given an (infinite) set Σ, a triple ⟨P, τ,Q⟩ with
P,Q ∈ Part(Σ) and τ : P → ℘(Q), is a 2-Partitions-Relation (2PR) triple. ⋄
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A relation R ∈ Rel(Σ) induces a 2PR triple ⟨PR, τR, QR⟩ where PR and
QR are the partitions induced by R and R−1, respectively, and the function
τR is defined by τR(B) ≜ {C ∈ QR | C ⊆ R(B)}. Conversely, a 2PR triple
⟨P, τ,Q⟩ defines a relation R⟨P,τ,Q⟩ ∈ Rel(Σ) defined as R⟨P,τ,Q⟩(x) ≜ ∪τ(P (x))
(namely, the union of the blocks in τ(P (x))). In the following, R⟨P,τ,Q⟩ is called
the relation underlying the 2PR triple ⟨P, τ,Q⟩ when no ambiguity arises. It
is routine to check that P ⪯ P⟨P,τ,Q⟩ where P⟨P,τ,Q⟩ ∈ Part(Σ) is induced by
R⟨P,τ,Q⟩.

We put forward Algorithm 2, designed as a refinement of Algorithm 1 repre-
senting R as a 2PR triple. Algorithm 2 is in symbolic logical form, meaning that
it symbolically represents and processes state relations as 2PR triples ⟨P, τ,Q⟩.
The refinement process of this algorithm preserves reflexivity of the underly-
ing relation, as in Algorithm 1, and during execution, for each state x, the set
R⟨P,τ,Q⟩(x) includes the states which are candidate to simulate x, and the states
in P⟨P,τ,Q⟩(x) are candidates to be simulation equivalent to x.

Algorithm 2: 2PR-based Algorithm
Input: TS G = (Σ, I, L,�), Ri ∈ PreO(Σ), an initial finite set σi ⊆ post∗(I)

1 Part(Σ) ∋ P,Q := {y ∈ Σ | Ri(x) = Ri(y)}x∈Σ ;
2 forall B ∈ P do ℘(Q) ∋ τ(B) := {C ∈ Q | C ⊆ Ri(B)};
3 ℘(Σ) ∋ σ := σi;
4 while true do

// Inv1: ∀x ∈ Σ.Rsim(x) ⊆R⟨P,τ,Q⟩(x) ⊆Ri(x)
// Inv2: σi ⊆ σ ⊆ post∗(I) Inv3: ∀B ∈ P.B ⊆ ∪τ(B)

5 U := {B ∈ P | ∪τ(B) ∩ σ = ∅, ∪τ(B) ∩ (I ∪ post(σ)) ̸= ∅};
6 V :={⟨a,B,C⟩∈L×P 2|∪τ(B)∩σ ̸=∅, B∩ prea(C )̸=∅,∪τ(B)⊈ prea(∪τ(C))};
7 nif
8 (U ̸= ∅) −→ Search :
9 choose B ∈ U, s ∈ (∪τ(B) ∩ (I ∪ post(σ)));

10 σ := σ ∪ {s};
11 (V ̸= ∅) −→ Refine :
12 choose ⟨a,B,C⟩ ∈ V ; S := prea(∪τ(C));
13 B′ := B ∩ prea(C); B′′ := B ∖ prea(C);
14 P.replace(B, {B′, B′′});
15 τ(B′) := τ(B); τ(B′′) := τ(B);
16 forall X ∈ {E ∈ τ(B′) | E ∩ S ̸= ∅, E ⊈ S} do
17 Q.replace(X, {X ∩ S,X ∖ S});
18 foreach A ∈ P do τ(A).replace(X, {X ∩ S,X ∖ S});
19 τ(B′) := {E ∈ τ(B′) | E ⊆ S};
20 (U = ∅ ∧ V = ∅) −→ return ⟨P, τ,Q, σ⟩;

Following the idea of Algorithm 1, this symbolic procedure computes a set
of principals {∪τ(B) | ∪τ(B)∩ σ ̸= ∅}B∈P each of which is provably reachable.
A block B is in U at line 8 if ∪τ(B) contains no provably reachable state, while
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it contains either an initial state or a successor of a provably reachable state.
Also, the set V at line 11 contains unstable triples, i.e., ⟨a,B,C⟩ is in V iff
∪τ(B) is provably reachable and there exist b ∈ B, c ∈ C such that R⟨P,τ,Q⟩(b)
is a-unstable w.r.t. R⟨P,τ,Q⟩(c). Algorithm 2 either updates reachability for the
principal of some block in U by executing a Search iteration or stabilizes the pair
of blocks associated to some triple in V by executing a Refine iteration. Refine it-
erations a-stabilize a pair of blocks (B,C) by possibly splitting B into B∩prea(C)
and B ∖ prea(C) (lines 13–15). Then, it refines the principal ∪τ(B ∩ prea(C))
at lines 16–18 by first splitting blocks of Q if they contain states occurring in
different sets of principals for the current relation R⟨P,τ,Q⟩, and, successively, by
removing at line 19 all the blocks not contained in prea(∪τ(C)).

At termination, we have that Rσ
⟨P,τ,Q⟩ coincides with the set of reachable prin-

cipals of Rsim (cf. (2.a) below), while we obtain an over-approximation of P post∗(I)
sim

(cf. (2.b) below). Similarly to Algorithm 1, the term “over-approximation” is used
w.r.t. the set P

post∗(I)
sim itself, and not to the contained blocks, whose elements

are computed in an exact way. The reader might find surprising the need of an ∃
quantifier in (2.b). We have that (2.b) provides a statement equivalent to (1.b),
but since P⟨P,τ,Q⟩ is, in general, coarser than P (as stated previously), then B
is not guaranteed to be in the domain of τ , hence the existential quantifier.

Theorem 6.2 (Correctness of Algorithm 2 for Finite Systems). Let
⟨P, τ,Q, σ⟩ be the output of Algorithm 2 on input G with |Σ| ∈ N, Ri ∈ PreO(Σ),
and σi ⊆ post∗(I). Moreover, let P⟨P,τ,Q⟩ ∈ Part(Σ) be the partition induced by
R⟨P,τ,Q⟩. Then:

R
post∗(I)
sim = Rσ

⟨P,τ,Q⟩ , (2.a)

P
post∗(I)
sim ⊆ {B∈P⟨P,τ,Q⟩ | ∃E∈P. E ⊆ B ∧ (∪τ(E)) ∩ σ ̸= ∅} . (2.b)

As done for Algorithm 1 and Theorem 5.3, we extend Theorem 6.2 to infinite
transition systems as follows.

Theorem 6.3 (Correctness of Algorithm 2). Let ⟨P, τ,Q, σ⟩ be the output
of Algorithm 2 on input G, Ri ∈ PreO(Σ), and σi ⊆ post∗(I). Moreover, let
P⟨P,τ,Q⟩ ∈ Part(Σ) be the partition induced by R⟨P,τ,Q⟩. If Assumption 5.5 holds,
then conditions (2.a) and (2.b) are satisfied.

Termination and Complexity of Algorithm 2. We provide two conditional ter-
mination results for Algorithm 2 together with complexity bounds on the total
number of its iterations. These results rely on progression guarantees and on the
fact that the partitions P and Q are coarser than Pbis throughout execution. Our
first conditional termination result is akin to that of Lee and Yannakakis [23,
Th. 3.1 and the following paragraph therein], and applies when the bisimulation
partition Pbis is finite. Moreover, it turns out that Algorithm 2 carries out a
total number of iterations which is at most quadratic in the size of Pbis.
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Theorem 6.4 (Termination of Algorithm 2). Let G, Ri ∈ PreO(Σ) and
σi ⊆ post∗(I) be the input of Algorithm 2. Moreover, let Pbis ∈ Part(Σ) be the
bisimulation partition w.r.t. Pi, the partition induced by Ri. If Pbis consists of
finitely many blocks then the number of iterations of Algorithm 2 is in O(|Pbis|2).

A second termination result holds under a local finiteness condition: Algo-
rithm 2 terminates if the number of blocks of Pbis contained in Ri(post

∗(I)) is
finite. The result comes with a quadratic bound on the number of iterations.

Theorem 6.5 (Alternative Termination of Algorithm 2). Let G, Ri ∈
Part(Σ) and σi ⊆ post∗(I) be the input of Algorithm 2 (note that Ri is a
partition). Let Pbis ∈ Part(Σ) be the bisimulation partition w.r.t. Ri, and let
T ≜ {Y ∈ Pbis | Ri(Y ) ∩ post∗(I) ̸= ∅} ( = {Y ∈ Pbis | Y ⊆ Ri(post

∗(I))}). If
T is finite then the number of iterations of Algorithm 2 is in O(|T |2).

It follows from Theorem 6.4 that Algorithm 2 terminates on all finite state
systems (as does Algorithm 1). It turns out that these two termination results
for Algorithm 2 are indeed stronger and extend to many infinite state systems as
well. In fact, the use of 2PR triples as a representation structure in Algorithm 2
brings significant benefits in terms of termination on infinite systems, since there
exist many inputs on which Algorithm 1 does not terminate, while Algorithm 2
does. The intuition here is that, through the use of 2PR triples, Algorithm 2
can refine infinitely many principals of the relation encoded by ⟨P, τ,Q⟩, in a
single Refine iteration. Below we show two examples which compare executions
of Algorithms 1 and 2 on one input, illustrating this behaviour.

Example 6.6. Consider the following infinite transition system, where σi =
I = {1}, and Ri = N× N.

0 1 2 3 · · ·

The simulation preorder Rsim is such that Rsim(0) = N, and Rsim(n) = N∖ {0}
for n ≥ 1, meaning that Psim = {{0},N ∖ {0}}. As usual, the block induced
by Ri is represented as a box, and the dotted line delimits the blocks of Psim.
During execution of Algorithm 1, the set U is empty, since the state 1 is in every
principal. On the other hand, the set V contains a triple ⟨a, i, 0⟩ for every i ∈
N∖{0}. Executing a Refine iteration refines exactly one principal: if ⟨a, i, 0⟩ ∈ V
is selected, then R(i) is updated to N ∖ {0}. It is easily seen that Algorithm 1
never terminates because V has infinitely many elements, and each iteration
removes exactly one element from it, thus V is never empty. ⋄

On the other hand, Algorithm 2 is able to refine infinitely many principals of
the underlying relation in a single Refine step. To illustrate this, we consider the
input from Example 6.6 and show that Algorithm 2 converges in a few iterations.
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Example 6.7. Consider the input of Example 6.6. The initial 2PR is given by
P = Q = {N} and τ(N) = {N}, U = ∅, and V is {⟨a,N,N⟩}. Executing one
iteration refines both P , Q and τ , so that P = Q = {{0},N∖ {0}}, τ({0}) = Q
and τ(N∖ {0}) = {N∖ {0}}. At this point, the underlying relation is such that
R⟨P,τ,Q⟩ = Rsim, and Algorithm 2 terminates. ⋄

7 Conclusion and Future Work

We introduced and proved the correctness and termination of algorithms solving
the reachable simulation problem. We showed fundamental differences w.r.t. to
the analogous problem for bisimulation studied by Lee and Yannakakis [23] in
1992. To the best of our knowledge, this is the first investigation of Lee and Yan-
nakakis’ problem recast to the simulation preorder and partition. Algorithm 2 is
the most relevant one for practical purposes, since this procedure converges on
all finite state systems and is well-suited to handle infinite state systems through
its symbolic representation, being able to converge on some—but not all, due to
undecidability—such infinite systems. In particular, we have shown that Algo-
rithm 2 offers the same termination guarantee as the LY algorithm [23]. On top
of that, our algorithm also terminates under a local finiteness hypothesis, while
LY [23] has no counterpart to such a termination guarantee.

Future work will explore possible domains in which the algorithm can be
applied. Choosing a specific class of implicitly7 represented systems gives rise to
a multitude of questions which are domain dependent. Solving these are crucial
to obtain an efficient implementation. Orthogonally, further generalizations of
our algorithm—for instance, to other behavioral relations such as branching
bisimilarity for labeled transition systems or stuttering equivalence for Kripke
structures—constitute future research paths.

Acknowledgements. Francesco Ranzato was partially funded by: the Italian
MUR, under the PRIN 2022 PNRR project no. P2022HXNSC; Meta (formerly
Facebook) Research, under a “Probability and Programming Research Award”
and under a WhatsApp Research Award on “Privacy-aware Program Analysis”;
by an Amazon Research Award for “AWS Automated Reasoning”. Nicolas Manini
is supported by the grant PIPF-2022/COM-24370, funded by the Madrid Re-
gional Government. This publication is part of the grant PID2022-138072OB-I00,
funded by MCIN/AEI/10.13039/501100011033/ FEDER, UE and part of the
PRODIGY Project (TED2021-132464B-I00) funded by MCIN/AEI/10.13039/
501100011033/ and the European Union NextGenerationEU/PRTR.

References

1. Alur, R., Henzinger, T.A.: Computer-Aided Verification (1999), chapter 4: Graph
Minimization. (Unpublished manuscript)

7 Reachability analysis is mostly superfluous on explicitly represented systems as they
usually do not encode unreachable states.



16 P. Ganty, N. Manini, F. Ranzato

2. Bensalem, S., Bouajjani, A., Loiseaux, C., Sifakis, J.: Property preserving simu-
lations. In: Proc. of the Fourth International Workshop on Computer Aided Ver-
ification, CAV’92. pp. 260–273. LNCS, Springer (1992). https://doi.org/10.1007/
3-540-56496-9_21

3. Bloom, B., Paige, R.: Transformational design and implementation of a new ef-
ficient solution to the ready simulation problem. Sci. Comput. Program. 24(3),
189–220 (1995). https://doi.org/10.1016/0167-6423(95)00003-B

4. Bouajjani, A., Fernandez, J.C., Halbwachs, N.: Minimal model generation. In: Proc.
of the International Workshop on Computer-Aided Verification, CAV’91. pp. 197–
203. LNCS, Springer (1991). https://doi.org/10.1007/BFb0023733

5. Bouajjani, A., Fernandez, J.C., Halbwachs, N., Raymond, P., Ratel, C.: Minimal
state graph generation. Science of Computer Programming 18(3), 247–269 (1992).
https://doi.org/10.1016/0167-6423(92)90018-7

6. Bustan, D., Grumberg, O.: Simulation-based minimization. ACM Trans. Comput.
Log. 4(2), 181–206 (2003). https://doi.org/10.1145/635499.635502

7. Cécé, G.: Foundation for a series of efficient simulation algorithms. In: Proc. of
the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2017. pp. 1–12. IEEE Computer Society (2017). https://doi.org/10.1109/LICS.
2017.8005069

8. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of Model Checking.
Springer, 1st edn. (2018)

9. Crafa, S., Ranzato, F., Tapparo, F.: Saving space in a time efficient simulation
algorithm. Fundam. Informaticae 108(1-2), 23–42 (2011). https://doi.org/10.3233/
FI-2011-412

10. Fisler, K., Vardi, M.Y.: Bisimulation minimization and symbolic model check-
ing. Formal Methods Syst. Des. 21(1), 39–78 (2002). https://doi.org/10.1023/A:
1016091902809

11. Gentilini, R., Piazza, C., Policriti, A.: From bisimulation to simulation: Coarsest
partition problems. Journal of Automated Reasoning 31(1), 73–103 (2003). https:
//doi.org/10.1023/A:1027328830731

12. Glabbeek, R.v., Ploeger, B.: Correcting a space-efficient simulation algorithm. In:
Proc. of the International Conference on Computer Aided Verification, CAV’08.
pp. 517–529. Springer (2008). https://doi.org/10.1007/978-3-540-70545-1_49

13. Gratzer, G.A.: Lattice theory: foundation. Springer (2011)
14. Grumberg, O., Long, D.E.: Model checking and modular verification. In: Proc.

of the 2nd International Conference on Concurrency Theory, CONCUR’91. pp.
250–265. LNCS, Springer (1991). https://doi.org/10.1007/3-540-54430-5_93

15. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 16(3), 843–871
(1994). https://doi.org/10.1145/177492.177725

16. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: SYN-
ERGY: a new algorithm for property checking. In: Proc. of the 14th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, FSE
2006. pp. 117–127. ACM (2006). https://doi.org/10.1145/1181775.1181790

17. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite
and infinite graphs. In: Proc. of IEEE 36th Annual Foundations of Computer
Science, FOCS’95. pp. 453–462 (1995). https://doi.org/10.1109/SFCS.1995.492576

18. Henzinger, T.A., Kopke, P.W.: Hybrid Automata with Finite Mutual Simulations.
Tech. Rep. TR-95-1497, Computer Science Departement (1995)

https://doi.org/10.1007/3-540-56496-9\_21
https://doi.org/10.1007/3-540-56496-9_21
https://doi.org/10.1007/3-540-56496-9\_21
https://doi.org/10.1007/3-540-56496-9_21
https://doi.org/10.1016/0167-6423(95)00003-B
https://doi.org/10.1016/0167-6423(95)00003-B
https://doi.org/10.1007/BFb0023733
https://doi.org/10.1007/BFb0023733
https://doi.org/10.1016/0167-6423(92)90018-7
https://doi.org/10.1016/0167-6423(92)90018-7
https://doi.org/10.1145/635499.635502
https://doi.org/10.1145/635499.635502
https://doi.org/10.1109/LICS.2017.8005069
https://doi.org/10.1109/LICS.2017.8005069
https://doi.org/10.1109/LICS.2017.8005069
https://doi.org/10.1109/LICS.2017.8005069
https://doi.org/10.3233/FI-2011-412
https://doi.org/10.3233/FI-2011-412
https://doi.org/10.3233/FI-2011-412
https://doi.org/10.3233/FI-2011-412
https://doi.org/10.1023/A:1016091902809
https://doi.org/10.1023/A:1016091902809
https://doi.org/10.1023/A:1016091902809
https://doi.org/10.1023/A:1016091902809
https://doi.org/10.1023/A:1027328830731
https://doi.org/10.1023/A:1027328830731
https://doi.org/10.1023/A:1027328830731
https://doi.org/10.1023/A:1027328830731
https://doi.org/10.1007/978-3-540-70545-1\_49
https://doi.org/10.1007/978-3-540-70545-1_49
https://doi.org/10.1007/3-540-54430-5\_93
https://doi.org/10.1007/3-540-54430-5_93
https://doi.org/10.1145/177492.177725
https://doi.org/10.1145/177492.177725
https://doi.org/10.1145/1181775.1181790
https://doi.org/10.1145/1181775.1181790
https://doi.org/10.1109/SFCS.1995.492576
https://doi.org/10.1109/SFCS.1995.492576


Computing Reachable Simulations on Transition Systems 17

19. Hofman, P., Lasota, S., Mayr, R., Totzke, P.: Simulation problems over one-counter
nets. Logical Methods in Computer Science 12 (2016). https://doi.org/10.2168/
LMCS-12(1:6)2016

20. Kučera, A., Jančar, P.: Equivalence-checking on infinite-state systems: Techniques
and results. Theory and Practice of Logic Programming 6(3), 227–264 (2006).
https://doi.org/10.1017/S1471068406002651

21. Kucera, A., Mayr, R.: Simulation preorder over simple process algebras. Inf. Com-
put. 173(2), 184–198 (2002). https://doi.org/10.1006/inco.2001.3122

22. Kucera, A., Mayr, R.: Why is simulation harder than bisimulation? In: Proc. of
the 13th International Conference on Concurrency Theory, CONCUR 2002. pp.
594–610. LNCS, Springer (2002). https://doi.org/10.1007/3-540-45694-5_39

23. Lee, D., Yannakakis, M.: Online Minimization of Transition Systems. In: Proc.
of the 24th Annual ACM Symposium on Theory of Computing, STOC ’92. pp.
264–274. ACM (1992). https://doi.org/10.1145/129712.129738

24. Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property preserving
abstractions for the verification of concurrent systems. Formal Methods Syst. Des.
6(1), 11–44 (1995). https://doi.org/10.1007/BF01384313

25. Majumdar, R., Ozay, N., Schmuck, A.K.: On abstraction-based controller design
with output feedback. In: Proc. of the 23rd International Conference on Hybrid
Systems: Computation and Control, HSCC 2020. pp. 1–11. ACM (2020). https:
//doi.org/10.1145/3365365.3382219

26. Pasareanu, C.S., Pelánek, R., Visser, W.: Concrete model checking with abstract
matching and refinement. In: Proc. 17th International Conference on Computer
Aided Verification, CAV 2005. pp. 52–66. LNCS, Springer (2005). https://doi.org/
10.1007/11513988_7

27. Ranzato, F.: A more efficient simulation algorithm on Kripke structures. In: Proc.
of the 38th International Symposium on Mathematical Foundations of Computer
Science 2013, MFCS 2013. pp. 753–764. LNCS, Springer (2013). https://doi.org/
10.1007/978-3-642-40313-2_66

28. Ranzato, F.: An efficient simulation algorithm on Kripke structures. Acta infor-
matica 51(2), 107–125 (2014). https://doi.org/10.1007/s00236-014-0195-9

29. Ranzato, F., Tapparo, F.: A new efficient simulation equivalence algorithm. In:
Proc. of the 22nd IEEE Symposium on Logic in Computer Science, LICS 2007. pp.
171–180. IEEE Computer Society (2007). https://doi.org/10.1109/LICS.2007.8

30. Ranzato, F., Tapparo, F.: An efficient simulation algorithm based on abstract
interpretation. Information and Computation 208(1), 1–22 (2010). https://doi.
org/10.1016/j.ic.2009.06.002

31. Tan, L., Cleaveland, R.: Simulation revisited. In: Proc. of the 7th International
Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems, TACAS 2001. pp. 480–495. LNCS, Springer (2001). https://doi.org/10.1007/
3-540-45319-9_33

32. van Glabbeek, R., Ploeger, B.: Five determinisation algorithms. In: Implementation
and Applications of Automata. pp. 161–170. LNCS, Springer (2008). https://doi.
org/10.1007/978-3-540-70844-5_17

33. Yannakakis, M., Lee, D.: An efficient algorithm for minimizing real-time transition
systems: Extended abstract. Formal Methods in System Design 11(2), 113–136
(1997). https://doi.org/10.1023/A:1008621829508

https://doi.org/10.2168/LMCS-12(1:6)2016
https://doi.org/10.2168/LMCS-12(1:6)2016
https://doi.org/10.2168/LMCS-12(1:6)2016
https://doi.org/10.2168/LMCS-12(1:6)2016
https://doi.org/10.1017/S1471068406002651
https://doi.org/10.1017/S1471068406002651
https://doi.org/10.1006/inco.2001.3122
https://doi.org/10.1006/inco.2001.3122
https://doi.org/10.1007/3-540-45694-5\_39
https://doi.org/10.1007/3-540-45694-5_39
https://doi.org/10.1145/129712.129738
https://doi.org/10.1145/129712.129738
https://doi.org/10.1007/BF01384313
https://doi.org/10.1007/BF01384313
https://doi.org/10.1145/3365365.3382219
https://doi.org/10.1145/3365365.3382219
https://doi.org/10.1145/3365365.3382219
https://doi.org/10.1145/3365365.3382219
https://doi.org/10.1007/11513988\_7
https://doi.org/10.1007/11513988_7
https://doi.org/10.1007/11513988\_7
https://doi.org/10.1007/11513988_7
https://doi.org/10.1007/978-3-642-40313-2\_66
https://doi.org/10.1007/978-3-642-40313-2_66
https://doi.org/10.1007/978-3-642-40313-2\_66
https://doi.org/10.1007/978-3-642-40313-2_66
https://doi.org/10.1007/s00236-014-0195-9
https://doi.org/10.1007/s00236-014-0195-9
https://doi.org/10.1109/LICS.2007.8
https://doi.org/10.1109/LICS.2007.8
https://doi.org/10.1016/j.ic.2009.06.002
https://doi.org/10.1016/j.ic.2009.06.002
https://doi.org/10.1016/j.ic.2009.06.002
https://doi.org/10.1016/j.ic.2009.06.002
https://doi.org/10.1007/3-540-45319-9\_33
https://doi.org/10.1007/3-540-45319-9_33
https://doi.org/10.1007/3-540-45319-9\_33
https://doi.org/10.1007/3-540-45319-9_33
https://doi.org/10.1007/978-3-540-70844-5\_17
https://doi.org/10.1007/978-3-540-70844-5_17
https://doi.org/10.1007/978-3-540-70844-5\_17
https://doi.org/10.1007/978-3-540-70844-5_17
https://doi.org/10.1023/A:1008621829508
https://doi.org/10.1023/A:1008621829508

	Computing Reachable Simulations on Transition Systems

