
Deciding program properties via complete
abstractions on bounded domains ‹

Roberto Bruni1r0000´0002´7771´4154s, Roberta Gori1r0000´0002´7424´9576s, and
Nicolas Manini123r0000´0002´7561´3763s

1 Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, Pisa, Italy,
troberto.bruni,roberta.goriu@unipi.it.
2 IMDEA Software Institute, Madrid, Spain,

nicolas.manini@imdea.org.
3 Universidad Politécnica de Madrid, Madrid, Spain

Abstract. Abstract interpretation provides an over-approximation of
program behaviours that is used to prove the absence of bugs. When the
computed approximation in the chosen abstract domain is as precise as
possible, we say the analysis is complete and false alarms cannot arise.
Unfortunately for any non trivial abstract domain there is some program
whose analysis is incomplete. In this paper we want to characterize the
classes of complete programs on some non-trivial abstract domains for
studying their expressiveness. To this aim we introduce the notion of
bounded domains for posets with ascending chains of bounded length
only. We show that any complete program on bounded domains can be
rewritten in an equivalent canonical form without nontrivial loops. This
result proves that program termination on the class of complete pro-
grams on bounded domain is decidable. Moreover, semantic equivalence
between programs in the above class can be reduced to determining the
equivalence of a set of guarded statements. We show how our approach
can be applied to a quite large class of programs. Indeed, abstract do-
mains defined on Boolean abstractions that are complete for the same
functions can be composed by preserving boundedness and complete-
ness also w.r.t. any expressible guard. This suggests that new complete
bounded abstract domains can be tailored on the guards and functions
appearing in the program. Their existence is sufficient to prove decid-
ability of termination and program equivalence for such programs.

Keywords: Abstract Interpretation, Complete abstraction, Bounded
domains, Program transformation, Termination, Program equivalence

1 Introduction

The current spread of software-driven computing devices and the fact that our
daily activities and lives are dependent on them makes program verification

‹ Research supported by MIUR PRIN Project 201784YSZ5 ASPRA–Analysis of Pro-
gram Analyses. Partially funded by RYC-2016-20281, by ESF Investing in your fu-
ture and by Madrid regional government as part of the program S2018/TCS-4339
co-funded by EIE Funds of the European Union.

2 Roberto Bruni, Roberta Gori, and Nicolas Manini

extremely important to prevent crashes that may involve millions of users (see,
for example, [12,2,18,23,10]). Formal methods and static analysis techniques
[19,21] are a useful tool to verify program properties before deployment and
to gain confidence on programs behaviour without running the actual code.
Unfortunately the founding fathers of Computer Science had well established the
limits of such approaches, by showing that all interesting problems about Turing
equivalent programming languages are undecidable, like program termination
and extensional equivalence [20,22], so that the pretension of devising universal
analysis procedures that works fine for any program is deemed to fail. Intensional
analysis is more subtle, because it takes into account how a program is written
and not just what a program computes.

Abstract Interpretation [7,16,21,5] is an intensional, sound-by-construction
static analysis method whose precision depends very much on the way in which
the program is coded. The basic idea of Abstract Interpretation is to execute
the program over an abstract domain that over-approximate the concrete pro-
gram semantics. In this sense, each set of concrete stores is approximated by
its least superset available in the abstract domain. For example, if one is inter-
ested in sign analysis, the abstract domain can be the finite set tH,Ză0,Zě0,Zu
such that the empty set is approximated by H, any set of negative values, like
t´4,´2u, is approximated by Ză0, any set of non-negative values by Zě0 and
any other (non-empty) set by Z. The symbolic execution of the program on the
abstract domain is performed by a so-called abstract interpreter that may loose
precision because it operates on abstract elements only. The abstract interpreter
is sound-by-construction in the sense that it is guaranteed to return an over-
approximation of the concrete result. Completeness of the abstract interpreter
would ensure that the abstract result is the least representative available in the
abstract domain of the concrete result, that is the abstract result is as much pre-
cise as possible. Recent work has shown that only trivial abstract domains can
be complete for all programs of a Turing equivalent language [3,14]. However, if
the abstract analysis is complete for all primitives appearing in a program then
we can conclude that, for that particular program, the analysis is also complete-
by-construction. Consequently, if we consider the sublanguage consisting of all
programs composed by complete primitives, then Abstract Interpretation gives
us an analysis framework that is sound-and-complete by construction.

Contribution. In this paper, we investigate the connections between complete-
ness in Abstract Interpretation and decidability of program termination and
(extensional) equivalence. The idea is to fix some constraints over the abstract
domain that guarantees the decidability of relevant properties for any program
for which the analysis is complete-by-construction. The notion we put forward
is that of bounded abstract domain (see Definition 13), where the termination of
the abstract interpreter is always guaranteed. Note that, in the general case, ter-
mination of the abstract interpreter does not imply termination of the concrete
program.

As a first result we show that for programs that are complete-by-construction
on a bounded abstract domain termination is decidable. This is obtained by

Deciding program properties via complete abstractions on bounded domains 3

showing that each such program can be rewritten in an equivalent form by
unrolling each loop a finite number of times, possibly ending up in a trivial loop.
Since the equivalent form can only contain trivial loops, which are immediate to
detect, it follows that program termination is decidable.

As a second main result, we show a convenient way of attacking program
equivalence for programs that are complete-by-construction on a bounded ab-
stract domain. This can be done by unrolling each program as specified above
and by then rewriting the code in a so-called reduced select normal form (see
Definition 32) that is essentially a series of nested if-then-else structures whose
basic commands are assignments and trivial loops. Finally, we give a procedure
to decide whether two programs in reduced select normal form are equivalent
or not by reducing the problem to the validity of a set of guarded statements
defined using the primitives appearing in the programs only.

To support the applicability of our approach we prove how abstract domains
defined on Boolean abstractions complete for the same functions can be com-
posed to obtain new bounded domains complete for the same functions and for
any guard expressible in one of the original domain. By composing different do-
mains each one complete for a different guard of the program we may end up
in designing a new abstract domain complete for any guard appearing in the
program.

Structure of the paper: In Section 2 we introduce the notation and recall the ba-
sic concepts of Abstract Interpretation. The notion of bounded abstract domain
is introduced in Section 3, together with some results on their composition. In
Section 4 we prove that any program whose analysis is complete on a bounded
domain can be transformed in an equivalent one for which termination is de-
cidable. We conclude Section 4 by discussing the applicability of the approach
when Boolean abstractions are used. Section 5 shows that equivalence between
complete programs on abstract bounded domain is decidable. Finally, Section 6
draws some conclusions and discusses future work. All technical proofs are col-
lected in the Appendix for reviewers’ convenience.

2 Background

2.1 Notation

We let N be the set of natural numbers, Z the set of integers and B the set of
Booleans and write XYY for the union of X and Y , XXY for their intersection,
XzY for their difference, X ˆ Y for their cartesian product, and Xn for the
cartesian product of X with itself n times. The powerset of X is denoted by
PpXq. Set inclusion is denoted as X Ď Y and strict inclusion as X Ă Y .

The identity function over a set X is written idX : X Ñ X and we omit the
subscript when it is clear from the context. The composition of two functions
f : X Ñ Y and g : Y Ñ Z is denoted by g ˝ f : X Ñ Z or more concisely by gf .

We also define the iterated application of a function f : X Ñ X as f0 def
“ idX and

4 Roberto Bruni, Roberta Gori, and Nicolas Manini

fn def
“ f ˝ fn´1. Abusing the notation, we extend function application to denote

its lifting to sets of elements fpXq
def
“ tfpxq | x P Xu. Tuples will be denoted by

x̃ “ xx1, . . . , xny P Xn, however, by overloading the notation x̃ will also denote
the set tx1, . . . , xnu when no ambiguity arises, moreover, let x̃1 P Xm we denote
as x̃ `̀ x̃1 the concatenation xx1, . . . , xn, x

1
1, . . . , x

1
my. X̃ X Y indicates the tuple

xX1 X Y, . . . ,Xn X Y y when each Xi is a set itself.
We formally define a partitioning of a set U where each partition does not

need to be nonempty.

Definition 1 (Partitioning). Given n P N, we say that P “ tP1, . . . , Pnu is a
partitioning of a set U iff U “

Ťn
i“1 Pi and Pi X Pj “ H for i ‰ j

We will refer to complete lattices as C “ xC,ĺC ,_C ,^C ,JC ,KCy where
_C ,^C are the lub and glb respectively and JC ,KC are the top and bottom
elements. When clear from the context the subscripts will be omitted. We define
an order on functions f, g : C Ñ D between lattices, denoted by f ĺ g, iff for
all c P C it holds that fpcq ĺD gpcq.

We say that a function f between posets is monotone if it is order preserving.
The function f is called additive if it is lub preserving and co-additive if it
preserves glbs. Moreover, we say that a mapping f : X Ñ X on a poset is
extensive (or reductive) iff for all x it holds that x ĺ fpxq (resp. fpxq ĺ x). We
also denote with lfp pfq the least fixpoint of f (w.r.t. ĺ) when it exists.

2.2 Abstract Interpretation

Abstract interpretation [7] is based on the notion of Galois connections/inser-
tions. We recall the basic concepts here, but see [5,7,9,6] for further details.

Given two complete lattices C and A, a pair of functions α : C Ñ A and
γ : AÑ C forms a Galois connection (GC) iff for all a P A, c P C :

αpcq ĺA a ðñ c ĺC γpaq

holds. The two domains C and A are called the concrete and the abstract domain,
respectively. α is the abstraction map while γ is the concretization map.

The elements of the abstract domain are usually denoted by using the sym-
bol 7, as S7 . As some relevant properties: γα is extensive and αγ is reductive,
both α and γ are monotone, and α is additive, while γ is co-additive.

Definition 2 (Galois Insertion). A Galois connection where αγ “ idA is
called a Galois Insertion (GI), in this case α is onto and γ is one-to-one.

An abstract domain A is said to be strict when γpKAq “ K. In a GI the
property γpS7q “ K ðñ S7 “ KA also holds. From now on we consider GIs on
strict abstract domains (unless otherwise specified).

Some elements of the concrete domain can be approximated without any loss
of informations: we call them expressible values.

Deciding program properties via complete abstractions on bounded domains 5

Definition 3 (Expressible Value). We say that a concrete element c P C is
expressible in A when γαpcq “ c. When instead c ă γαpcq we say that c is strictly
approximated in A.

Also functions need to be approximated on abstract domains.

Definition 4 (Correct Approximation). Given a concrete function f : C Ñ
C, we say that f 7 : AÑ A is a correct approximation of f iff αf ĺ f 7α.

It is known that if f 7 is a correct approximation of f then we also have fixpoint
correctness when least fixpoints exist, i.e., αplfp pfqq ĺ lfp

`

f 7
˘

holds.
Between all abstract functions that approximate a concrete one we can define

the most precise one.

Definition 5 (Best Correct Approximation). We define the best correct

approximation (BCA) of a concrete function f as fA def
“ αfγ.

Such function is called best correct approximation because it holds fA ĺ f 7 for
any other correct approximation f 7 of f .

Definition 6 (Complete approximation). A correct approximation f 7 is
complete iff αf “ f 7α holds.

Analogously to soundness, completeness transfers to fixpoints, meaning that if
f 7 is complete for f then fixpoint completeness αplfp pfqq “ lfp

`

f 7
˘

holds.
An abstract domain is said to be complete for f if there exists a complete ap-

proximation for f in that domain. A known result is that a complete abstraction
exists iff αf “ αfγα, or equivalently γαf “ γfAα.

We use CApfq to indicate that f admits a complete approximation in A (the
abstraction domain will be omitted when clear from the context), this notation
naturally extends to sets of functions F in the sense that we write CApF q when
all the functions in F admit a complete approximation in A.

Abstract domains can be finite or infinite with some desiderable properties
that ensure the termination of the abstract semantics computation.

Definition 7 (ACC Poset). A poset is ACC (satisfies the Ascending Chain
condition) if it has no infinite strictly increasing chain.

Any analysis through abstract interpretation over an ACC domain is guaranteed
to terminate, since by definition it follows that any fixpoint computation will
converge in a finite number of steps.

2.3 Programs

Syntax. We consider the usual definitions for Boolean and integer expressions,
where, for simplicity we omit expressions that can generate runtime errors, like
division by zero. At the level of the concrete collecting semantics, runtime errors
could be handled either with the introduction of distinguished elements in the
domain or by using the bottom element (the empty set of results). In the former

6 Roberto Bruni, Roberta Gori, and Nicolas Manini

case, runtime errors are distinguished from divergence and must be propagated
ad hoc in the semantic definitions, while in the latter case they are just handled
as absence of result. We let:

AExp Q a ::“ v P Z | x P Var | a` a | a´ a | a ˚ a | a˜ k

BExp Q b ::“ tt | ff | a “ a | a ą a | b^ b | ␣b.

where Var is a denumerable set of program variables and k P Z is different from
0. We will introduce some syntax sugar whenever required to keep the notation
short by writing e.g. x ď y instead of ␣px ą yq or px_yq instead of ␣p␣x^␣yq.

Moreover, we define the syntactic substitution of all the occurrences of a
variable x with an expression a1 inside the expression a, denoted by ara1{xs, as:

vra1{xs
def
“ v, yra1{xs

def
“

#

a1 if y “ x

y otherwise

pa1 op a2qra
1{xs

def
“ a1ra

1{xs op a2ra
1{xs, for op P t`,´, ˚u

pa ˜ kqra1{xs
def
“ ara1{xs ˜ k.

Such definition extends naturally to Boolean expressions in BExp.
Given any subset of arithmetic expressions A Ď AExp and of Boolean expres-

sions B Ď BExp, we define two sets of programs: ImppA,Bq the set of imperative
programs on A and B , and Imp´

pA,Bq a set of programs using only trivial loops
of the form while tt do skip, for which we use the shorthand wK.

The set of programs ImppA,Bq and Imp´
pA,Bq are generated by the follow-

ing grammars, where a P A and b P B:

Imp Q c ::“ skip | x :“ a | c; c | if b then c else c | while b do c

Imp´
Q c ::“ skip | x :“ a | c; c | if b then c else c | wK

The two sets A and B will be omitted when clear by the context.

Concrete semantics. In order to define the semantics of an imperative program,
we consider a store σ P Σ as a function from V Ď Var to integers, that is,

Σ
def
“ V Ñ Z. We define the semantics for integer expressions L¨M : AExpˆΣ Ñ Z

as:

LvMσ def
“ v LxMσ def

“ σpxq

La1 ` a2Mσ
def
“ La1Mσ ‘ La2Mσ La1 ´ a2Mσ

def
“ La1Mσ a La2Mσ

La1 ˚ a2Mσ
def
“ La1Mσ f La2Mσ La˜ kMσ def

“ LaMσ c k

where ‘,a,f and c are the usual mathematical operations. Analogously we
define the semantic of Boolean expressions L¨M : BExp ˆ Σ Ñ B corresponding
to the usual comparison and logical operators “,ą,^,␣.

Deciding program properties via complete abstractions on bounded domains 7

We define the concrete collecting semantics by extending the previous seman-

tics to sets of stores. Let S def
“ PpΣq, J¨K : AExpˆSÑ PpZq and J¨K : BExpˆSÑ

S where JaKS def
“ tLaMσ | σ P Su and JbKS def

“ tσ P S | LbMσ “ ttu. The concrete
collecting semantics for programs in Imp (and Imp´) is defined as follows:

Jx :“ aKS def
“ tσrx ÞÑ LaMσs | σ P Su

JskipKS def
“ S

Jc1; c2KS
def
“ Jc2KJc1KS

Jif b then c1 else c2KS
def
“ Jc1KJbKS Y Jc2KJ␣bKS

Jwhile b do cKS def
“ J␣bKlfp

´

Γ b,c
S

¯

where Γ b,c
S

def
“ λX.S Y JcKJbKX. We also denote with b the set JbKΣ of all stores

satisfying b. By this convention, abusing the notation, JbKS “ bX S.

Abstract semantics. By considering A as an abstract domain for S, we can define
the abstract collecting semantics as follows. For integer and Boolean expressions,

consider the best correct approximations JaK7

A
def
“ JaKA and JbK7

A
def
“ JbKA. The

semantics for Imp and Imp´ is defined as follows:

Jx :“ aK7

AS
7 def
“ αJx :“ aKγS7

JskipK7

AS
7 def
“ S7

Jc1; c2K
7

AS
7 def
“ Jc2K

7

AJc1K
7

AS
7

Jif b then c1 else c2K
7

AS
7 def
“ Jc1K

7

AJbK7

AS
7 _A Jc2K

7

AJ␣bK7

AS
7

Jwhile b do cK7

AS
7 def
“ J␣bK7

Alfp
´

Ab,c
S7

¯

where Ab,c
S7

def
“ λX7.S7_A JcK7

AJbK7

AX
7. For our following applications we need to

observe the following straightforward property, which is a consequence of [14].

Lemma 8. If all assignments in A and all guards in B are complete on A, then
any program in ImppA,Bq (and in Imp´

pA,Bq) is complete on A.

Note that for any X P S, X7 P A, we have JwKKX “ H and JwKK7

AX
7 “ K.

The concrete semantics is additive and, moreover, when A and B are sets
of respectively complete assignments and guards, then for any c P Imp´

pA,Bq,

JcK7

A is also additive.
In the paper we will exploit Boolean abstraction domains [1]. They are defined

by mapping concrete elements into sets of bitvectors as follows (we use σ (p
for a given predicate p and a concrete state σ to denote that p holds in σ):

Definition 9 (Boolean abstraction). Given a set of Boolean predicates P “
tp1, . . . , pnu defined over concrete states, we define the associated Boolean ab-

straction on the abstract domain BoolpPq def
“ xPpt0, 1unq,Ď,Y,X, t0, 1un,∅y via

8 Roberto Bruni, Roberta Gori, and Nicolas Manini

the following abstraction/concretization maps, where 1¨ pi
def
“ pi and 0¨ pi

def
“ ␣pi:

αPpSq
def
“ txv1, . . . , vny | S X tσ | σ (v1¨ p1 ^ ¨ ¨ ¨ ^ vn ¨ pnu ‰ ∅u

γPpS
7q

def
“

␣

σ
ˇ

ˇ Dxv1, . . . , vny P S
7. σ (v1¨ p1 ^ ¨ ¨ ¨ ^ vn¨ pn

(

2.4 Conditions for Completeness of Guards

The only abstract domains that are complete for all programs in any Turing
complete programming language are the trivial ones4 (see [14,3]). In [14] the
authors further observed that the completeness of (the semantic functions as-
sociated with) assignments and Boolean guards occurring in a program is a
sufficient condition to guarantee the completeness of the whole program (see
Lemma 8 above). While the completeness of assignments has been extensively
studied (e.g., the completeness conditions for assignments in major numerical
domains such as intervals, congruences, octagons and affine relations have been
fully settled [14,16], while the case of Boolean guards is more troublesome and
has been studied in [4], from which we report below the main results we exploit
here. Formally, completeness of guards is defined as follows:

Definition 10 (Complete Guard). We say that a guard b is complete (in
short Cpbq) to indicate that the filtering functions for both b and ␣b are complete,

that is, letting Fb
def
“ tλX P S . bXX,λX P S .␣bXXu, then Cpbq ðñ CpFbq.

Both b and ␣b being expressible is a necessary condition for Cpbq to hold.
Moreover:

Theorem 11 (cf. [4]). If b and ␣b are expressible in A, then:

Cpbq ðñ @S P S . p αpS X bq “ αpSq ^A αpbq ^ αpS X␣bq “ αpSq ^A αp␣bq q

ðñ @S7

1, S
7

2 P A .
´

S7

1 ĺ αpbq ^ S7

2 ĺ αp␣bq ùñ γpS7

1 _A S7

2q “ γpS7

1q Y γpS7

2q

¯

Theorem 11 offers a convenient way to check guard completeness: it is necessary
and sufficient to check that the join of every two points under b and ␣b respec-
tively is expressible in the domain. Theorem 11 also gives a way to compute
the completeness closure w.r.t. to a guards b, by enforcing the presence in the
abstract domain of the elements b and ␣b together with the (concrete) join of
every two (abstract) points under b and ␣b.

3 Bounded Domains

We first introduce the notion of bounded (abstract) domain in order to char-
acterize the class of programs that we will manipulate in order to remove any
nontrivial loop.

4 Namely, the identical abstraction, making abstract and concrete semantics the same,
and the top abstraction, making all programs equivalent by abstract semantics.

Deciding program properties via complete abstractions on bounded domains 9

Definition 12 (k-ACC Poset). A poset is k-ACC iff all ascending chain
lengths are bound by a value k P N.

Definition 13 (Bounded domain). A poset is said to be bounded if there
exists some value k for which it is k-ACC.

Whenever a complete abstract interpretation can be conducted on a bounded
domain, then we can exploit the parameter k which gives us an upper bound to
the number of iterations required to compute any abstract fixpoint.

Focusing on the chain of iterates produced when computing lfp
´

Ab,c
S7

¯

we

observe that if our abstract domain is bounded, then it is (k+1)-ACC for some
k, thus it holds that the produced chain contains no more than k ` 1 distinct
values, meaning that the fixpoint computation converges in no more than k ` 1
steps, that is lfp pAq “ ApkqpKAq.

An interesting result about complete abstractions is the following:

Lemma 14. Let A be a strict domain for which Jc1K and Jc2K are complete. If

Jc1K
7

A “ Jc2K
7

A it holds that:

Jc1KS “ K ðñ Jc2KS “ K

We present two well-known abstract domains Sign and Mod3 in Figure 1
which are both bounded and will be used in the upcoming examples.

Z

Zď0 Z‰0 Zě0

Ză0 Z“0 Zą0

H

(a) Sign domain.

Z

Zı2 Zı1 Zı0

Z”0 Z”1 Z”2

H

(b) Mod3 domain.

Fig. 1: Abstract domains

Note that we use the symbol ”3, or ” when no ambiguity arises, to identify
modulo 3 congruences.

The abstraction function for the Sign domain is defined by mapping each set
X of concrete values based on the sign of its elements, let us define an auxiliary
function sgnpxq : Z Ñ tZă0,Z“0,Zą0u which maps concrete values based on
their sign (and zero in Z“0), the abstraction map is then defined as:

αSignpSq
def
“

ł

xPS

sgnpxq

10 Roberto Bruni, Roberta Gori, and Nicolas Manini

The concretization map is then defined intuitively over Ză0 as

γSignpZă0q
def
“ tx P Z | x ă 0u

and following a similar approach for all the other abstract values.
Both the abstract and the concretization maps for the Mod3 domain are de-

fined in a similar fashion, by mapping every concrete value based on its modulo 3
reminder as classically defined.

Multiplication is a complete operation in both domains, while addition and
difference are complete in Mod3 only.

We now show that Boolean abstractions give rise to bounded domains which
can be composed via predicate union while preserving functional completeness.

Lemma 15. Let P def
“ tp1, . . . , pnu, Q

def
“ tq1, . . . , qmu be sets of predicates, and

let P
def
“ BoolpPq and Q

def
“ BoolpQq be the Boolean abstraction domains built

over the two predicate sets, respectively, and let f : Σ Ñ Σ be a complete function

over both P and Q. Then, the Boolean abstraction domain D
def
“ BoolpP YQq

built over the set of predicates P YQ is such that:

1. D is bounded
2. The predicate filter for every predicate in P YQ is complete
3. f is complete over D

We also note that the class of bounded domains is closed under reduced
product [8, Section 10.1] (which also preserves completeness for functions which
are complete on both domains). Moreover, computing the completeness closure
w.r.t. to guards as per Theorem 11 preserves boundedness, too.

It is worth noting that using Cartesian predicate abstraction [1] instead of
Boolean abstraction would not offer the same guarantees about completeness for
predicate filters. Indeed Lemma 15 requires the presence of the disjunction of
predicate filters, which is in general missing in the Cartesian predicate abstrac-
tion.

4 Program Termination

In this section we explore the connections between complete abstractions in
bounded domains and program termination on a given input. Formally, given
a command c P ImppA,Bq and an input set S, the termination problem corre-
sponds to deciding whether JcKS “ K or not, i.e., we want to establish if there
is some input in S where c terminates or not.5 We show that the bound on the
length of any ascending chain in the abstract domain can be used to infer the
largest number of times each loop must be unrolled. This allows us to define
a program transformation that replaces each loop with its bounded unrolling

5 Note that this is different from establishing termination for all input in S, which
should be addressed separately.

Deciding program properties via complete abstractions on bounded domains 11

while preserving the concrete collecting semantics. While the original program
belongs to ImppA,Bq, the transformed program will belong to Imp´

pA,Bq, that
is the only loops have the form wK, which is the only source of divergence. As
a main result, termination is thus decidable for any complete program (and any
input).

The first observation is that in any pk`1q-ACC domain and for any ImppA,Bq
program while b do c we have that, for all S7,

Jwhile b do cK7

AS
7 “ Jif pk´1q

b,c K7

AS
7 (1)

where if
pk´1q

b,c is the Imp´
pA,Bq command inductively defined as:

if
p0q

b,c
def
“ if b then wK else skip

if
pn`1q

b,c
def
“ if b then

´

c; if
pnq

b,c

¯

else skip

To see this, we exploit the equality

Apk`1qpKAq “

˜

k
ł

i“0

pJcK7

AJbK7

Aq
piqS7

¸

_A KA (2)

which can be immediately proved by induction on k. Then, the equality (1) can
be proved as follows:

Jwhile b do cK7

AS
7 “ J␣bK7

Alfp pAq “ {Hypothesis}

J␣bK7

AA
pkqpKAq “ {Equation 2}

J␣bK7

A

˜˜

k´1
ł

i“0

pJcK7

AJbK7

Aq
piqS7

¸

_A KA

¸

“ {Additivity of J␣bK7

A}

˜

k´1
ł

i“0

J␣bK7

ApJcK
7

AJbK7

Aq
piqS7

¸

_A J␣bK7

AKA “ {Definition of JskipK7

A, J␣bK7

A}

˜

k´1
ł

i“0

JskipK7

AJ␣bK7

ApJcK
7

AJbK7

Aq
piqS7

¸

_A KA “ {By induction on k}

Jif pk´1q

b,c K7

AS
7

This process of “unrolling” while loops introduces a sequence of nested
if -else commands of depth k; unrolling a while loop having d´ 1 nested loops
inside produces a program having a total of kd if -else commands. Equation 1
proves that the transformed program will exhibit an equivalent behaviour as the
original one on the abstract domain A (for any abstract input).

Next we exploit the notion of complete abstraction. Assuming that the set
A contains only complete assignments and B only complete guards on the ab-
stract domain A, we have that every program in ImppA,Bq is complete as well

12 Roberto Bruni, Roberta Gori, and Nicolas Manini

as its transformed version in Imp´
pA,Bq, because the transformation does not

introduce any new guard or assignment (see Lemma 8). By Lemma 14 and Equa-
tion (1), we conclude that, from a divergence perspective, the while command
is equivalent to its transformed version in if -else form, that is, the concrete se-
mantics of the first one diverges if and only the concrete semantics of the second
does.

Theorem 16 (Termination). Let A contain only complete assignments and
B only complete guards on the abstract domain A. For any guard b P B and any
command c P ImppA,Bq we have

Jwhile b do cKS “ K ðñ Jif pk´1q

b,c KS “ K (3)

In fact, a much stronger result can be obtained, namely that the concrete
collecting semantics of the program and its transformation coincide.

Theorem 17 (Unrolling). Let A contains only complete assignments and B
only complete guards on the abstract domain A. For any guard b P B and any
command c P ImppA,Bq we have

Jwhile b do cK “ Jif pk´1q

b,c K (4)

Proof. By applying k ´ 1 expansions

Jwhile b do cK “ Jif b then pc;while b do cq else skipK

we get an equivalent command which is identical to if
pnq

b,c except for the if
p0q

b,c

element which is replaced by while b do c. Morever, by Equation (3), we obtain
the thesis. [\

This result lets us conclude that:

Corollary 18. For any complete program c P ImppA,Bq on a bounded strict
abstract domain there exists an Imp´

pA,Bq program which is equivalent under
the concrete semantics.

The above procedure also gives us a constructive way to obtain such an
equivalent program that will also be complete.

4.1 Deciding Program Termination

We now use our results to solve the program termination problem, which consists
of, given a program c and an input σ, determinining if JcKtσu “ H.

Let us consider the command c1 P Imp´ obtained by the previous transforma-
tion of c. The result builds on the fact that for any Imp´ program, termination
is decidable since it can only involve trivial loops wK, i.e., we can safely state
that any nonterminating computation will reach some wK in a finite number of
steps.

Deciding program properties via complete abstractions on bounded domains 13

In fact, for any input, we can safely execute the semantics of the equivalent
Imp´ program c1 and as soon as we enter any loop we can safely conclude that
the program diverges on such input.

On the other hand, executing c1 on any terminating input will never enter
any loop, since that would lead to divergence. Observing that the number of
executed steps in absence of any loop is bounded by the program length (since
no program line can be executed more than once) concludes that termination
will be decided in a finite number of steps.

Putting it all together:

Theorem 19 (Deciding termination). Let c P ImppA,Bq be any program
which admits a complete approximation in a bounded strict abstract domain,
then program termination of c is decidable for any input σ.

This gives some interesting insight in characterizing the expressiveness of the
class of programs for which such an analysis is effective, since classical results
such as Rice’s Theorem and the undecidability of the halting problem state that
program termination is, in general, undecidable. This result can also be applied in
a different way: given a program c for which we want to investigate termination,
we aim at finding a bounded abstract domain in which all of the guards and
assignments appearing in c are complete. By exhibiting such a domain we are
able to conclude that termination is decidable for c.

We now show an example to give an idea of the manipulations occurring
during the proposed program transformation.

Example 20. Consider the program w1 defined as follows:

w1
def
“ while px ı3 0q do px :“ 2 ˚ xq

where x ı3 0 is a shorthand for ␣px ´ 3 ˚ px ˜ 3q “ 0q. The program w1

does not contain any other while loops inside its body and admits a complete
approximation in the domain Mod3 , which is 4-ACC thus we conclude that
termination is decidable on w1, and its equivalent form is:

Jw1K “ Jif p2q

pxı30q,px:“2˚xq
K

that is, if
p2q

pxı30q,px:“2˚xq
“

i f x ı3 0 then
x := 2 ∗ x ;
i f x ı3 0 then

x := 2 ∗ x ;
i f x ı3 0 then

while true do skip
else skip

else skip
else skip

14 Roberto Bruni, Roberta Gori, and Nicolas Manini

For example, it is now immediate to check that if initially x “ 1, then we
multiply x by 2 twice and we reach the innermost if with x “ 4, thus entering
the trivial non-terminating loop. Similarly, for x “ 5 we reach the innermost if
with x “ 20 and detect divergence.

4.2 Exploiting Boolean Abstractions

The decidability result presented in Theorem 19 (but the same considerations
will also hold for Theorem 35) can be applied whenever we can prove the exis-
tence of a bounded domain satisfying the required hypotheses. Lemma 15 sug-
gests a strong approach to proving the existence of such a domain. The idea is to
tailor some boolean abstraction domain to each fragment of the program, pos-
sibly using different guards, but complete w.r.t. the same kinds of assignments,
and then derive the existence of a complete bounded abstract domain for the
whole program from Lemma 15.

As a notable example, we observe that domains built over congruences mod-
ulo some given number, like Mod3 , are complete w.r.t. sum, difference and prod-
uct. They are also complete w.r.t. all the guards testing the remainder of the
division modulo the given number. As they are all boolean abstractions, it fol-
lows that both termination and program equivalence are decidable for programs
in which all guards test for congruences, and assignments apply arithmetic op-
erations.

5 Program Equivalence

In this section we address the problem of checking program equivalence, which
can formally be stated as follows: given two programs c1, c2 P ImppA,Bq we
want to decide whether Jc1K “ Jc2K or not. Thanks to the results in Section 4,
we define here a program transformation that produces a so-called reduced select
normal form, such that program equivalence reduces to decide the validity of a
set of guarded statements. The technique presented here applies to deterministic
programs as the ones in Imp. Its extension to more general analysis frameworks
where nondeterministic languages are also considered may not be trivial and
needs further investigation.

First, we introduce an intermediate syntax defining a select command which
constitutes a generalization of if -else as a n-way conditional.

Definition 21 (select). Given two vectors b̃ P BExpn, c̃ P pImp´q
n
such that b̃

forms a partitioning of Σ, we call n the branching factor of the select construct
with a semantics defined as:

Jselectpb̃ : c̃qKS def
“

n
ď

i“1

JciKJbiKS

This can be seen as a generalized multi-way if command, like Dijkstra’s guarded
statements, and can be expressed as a sequence of nested if -else by following a

Deciding program properties via complete abstractions on bounded domains 15

nested structure of the form if b1 then c1 else pif b2 then c2 else . . . q. Since b̃
forms a partitioning of Σ, the order in which the various disjoint cases are nested
is not important: semantic equivalence holds under any arbitrary permutation
applied to the entries of both b̃ and c̃. We note that as a special case:

Jif b then c1 else c2K “ Jselectpxb,␣by : xc1, c2yqK.

By this observation we can define a new auxiliary grammar:

Select Q c ::“ skip | x :“ a | c; c | selectpb̃ : c̃q | wK

In the following we refer to skip,wK and assignments as basic commands. We will
also use the notation SelectpA,Bq to explicitly indicate the sets of expressions
and guards used to construct the Select commands, as we did for Imp and Imp´.
We will show that every Imp´ program can be translated in an equivalent Select
one (and every Select program can be translated into an Imp´ one by applying
the above definition of select as nested if statements).

The program transformation is defined in two phases: first we transform the
Imp´ program in a so-called select normal form (see Definition 29) that consists
of at most one select statement and then we compress series of assignments
into a single one (called reduced select normal form, see Definition 32). The
transformation to select normal form requires the ability to invert the order
in which assignments and guards are applied, so to move all guards upfront.
The next section on backward computation introduces the main concepts and
notation exploited in the reduction to normal form. Finally, in Section 5.4 it is
explained how to compare two programs in reduced select normal forms.

5.1 Backward Computation

In order to manipulate the program structure obtained in the previous section
we are going to introduce a concept of inverse semantics for Imp´ commands,
which is a function mapping a command c and a set of states S to all possible
states for which the execution of the semantics of c may lead to some state in
S, also called the weakest liberal precondition [11].

Definition 22 (Inverse Concrete Semantics). We define X “ JcK´1S as
the largest set X such that JcKX Ď S, this can be computed as:

Jx :“ aK´1S
def
“

␣

σ1
ˇ

ˇ σ P S, σ1 P LaM´1σpxq
(

JskipK´1S
def
“ S

Jc1; c2K´1S
def
“ Jc1K´1Jc2K´1S

Jif b then c1 else c2K´1S
def
“ JbKJc1K´1S Y J␣bKJc2K´1S

JwKK´1S
def
“ Σ

where LaM´1pxq “ tσ | LaMσ “ xu.

16 Roberto Bruni, Roberta Gori, and Nicolas Manini

In general J¨K´1 is not the inverse function (in the mathematical sense) of
the concrete semantics, this can be observed for example as:

Jif x “ 0 then px :“ x` 1q else px :“ x` 2qKt0u “ t1u
but Jif x “ 0 then px :“ x` 1q else px :“ x` 2qK´1t1u “ t0,´1u ‰ t0u

This is due to the fact that we can loose some information related to the previous
state at each conditional branching. We also note that the function LaM´1 in the
definition maps each post-value to a set of possible pre-states, this is needed in
cases such as that of constant assignment, since we loose any information about
the previous value of x after we assign a constant value to it:

Jx :“ 0K´1t0u “ J

Moreover, let us notice that the inverse semantics could give us a set of values
smaller (in cardinality) than the input, as for:

Jx :“ 0K´1t1u “ K

In general, it holds for all Imp´ commands c that JcK´1 is additive, implying that
it is also monotone, that JcK´1JcK is extensive and dually JcKJcK´1 is reductive.

We now observe that, in general, JcKJcK´1S ‰ S whenever there exists
some x P S such that x is not reachable through JcK from any input, then
x R JcKJcK´1S, for example:

Jx :“ 0KJx :“ 0K´1t0, 1u “ Jx :“ 0KJ “ t0u.

The following result follows from the literature.

Lemma 23 (Adjointness). For any c P Imp´ and X,S Ď Σ it holds

X Ď JcK´1S ðñ JcKX Ď S

We now show an important result that arises whenever we apply JcK´1 to
sets which constitute a partitioning. In our case we will apply this result to the
partitioning tb,␣bu whenever b is a valid guard.

Lemma 24. For any c P Imp´ and any partitioning P “ tP1, . . . , Pnu of Σ it
holds that:

Σ “

n
ď

i“1

JcK´1Pi

Lemma 25. For any Imp´ command c and any partitioning P “ tP1, . . . , Pnu

of Σ it holds that:

JcKtσu “ K ðñ σ P
`

JcK´1Pi X JcK´1Pj

˘

for any i ‰ j

We now introduce b´c def
“ JcK´1b as a shorthand which we will use in the

upcoming sections.
Another key result which can be obtained by using the inverse semantics

enables us to swap the order of a command execution and a filtering as follows:

Deciding program properties via complete abstractions on bounded domains 17

Lemma 26. For any guard b and command c:

JbKJcKS “ JcK
`

JcK´1bX S
˘

that is, in a more succinct notation: JbKJcKS “ JcKJb´cKS.

We now address the problem of guaranteeing that the process of applying
the inverse semantics of c to any guard b produces some b´c which is contained
in our language Imp´pA,Bq. In the upcoming sections we will show that the
only commands for which we will need to apply Lemma 26 are those where c
is a basic command. Of these three cases, skip is trivial and does not need
any manipulation, since JbKJskipK “ JskipKJbK “ JbK, and the same holds for
JbKJwKK “ JwKKJbK “ JwKK.

The case for assignment can be resolved by applying the following property.

Theorem 27. For any a P AExp and b P BExp it holds:

JbKJx :“ aK “ Jx :“ aKJbra{xsK

The previous theorem together with the previous observations allow us to
conclude the main result of this section.

Corollary 28. If the set of guards B is closed under syntactical substitution,
in the sense that for any a P A and b P B we have bra{xs P B, then for any
c P Imp´ and b P B, there exists some b1 P B such that JbKJcK “ JcKJb1K.

5.2 Select Normal Form

Next, we define select normal form and prove that any Select command can be
put in such format by a semantic-preserving transformation.

Definition 29 (Select normal form, SNF). We say that a program c P Select
is in normal form (in short, SNF) if either:

– c is wK;
– c is a sequential composition of skips and assignments;
– c is in the form selectpb̃ : c̃q and every ci is wK or a sequential composition

of skips and assignments.

We also use c̃; c as a shorthand for the vector xpc1; cq, . . . , pcn; cqy obtained by
post-composing c to every command ci in a sequential way, and the same goes
for c; c̃ using pre-composition. We now introduce some rewriting rules involving
select which are helpful in manipulating Select programs:

Post-composition with arbitrary c: The case Jselectpb̃ : c̃q; cK can be rewritten
as Jselectpb̃ : c̃; cqK, post-composing c to every ci sequentially; the equality holds
in a straightforward way by expanding the definition and applying additivity.

18 Roberto Bruni, Roberta Gori, and Nicolas Manini

Pre-composition with wK and skip: These two cases are trivial, since:

Jskip; selectpb̃ : c̃qK “ Jselectpb̃ : c̃qK

JwK; selectpb̃ : c̃qK “ JwKK

Pre-composition with an assignment: In the case Jx :“ a; selectpb̃ : c̃qK we
can safely observe that x :“ a is always terminating, thus by expanding the
definitions:

Jx :“ a; selectpb̃ : c̃qKS “
n
ď

i“1

JciKJbiKJx :“ aKS “
n
ď

i“1

JciKJx :“ aKJb´x:“a
i KS

where the fact that the set of states on which x :“ a diverges is empty ensures

that b̃´x:“a def
“ Jx :“ aK´1b̃ “ xb´x:“a

1 , . . . , b´x:“a
n y forms a partitioning by means

of Lemmas 24 and 25, thus Jx :“ a; selectpb̃ : c̃qK “ Jselectpb̃´x:“a : c; c̃qK.

Nested select commands: Let us consider the case selectpb̃ : c̃q where some
ci “ selectpb̃1 : c̃1q, with |b̃| “ n and |b̃1| “ m, we take i “ 1 (without loss of
generality, since the semantics is preserved under permutation of the indexes)
and by expanding the definition we get:

Jselectpb̃ : c̃qKS “ Jselectpb̃1 : c̃1qKJb1KS Y
n
ď

i“2

JciKJbiKS

and expanding the isolated term: Jselectpb̃1 : c̃1qKJb1KS “
Ťm

j“1Jc
1
jKJb1

jKJb1KS.
Since b̃1 is a partitioning of Σ, then b̃1 X b1 is a partitioning of b1, thus

b̃2 “ xb1
1 X b1, . . . , b

1
m X b1, b2, . . . , bny is a partitioning of Σ and defining c̃2 “

xc1
1, . . . , c

1
m, c2, . . . , cny gives the equality Jselectpb̃ : c̃qK “ Jselectpb̃2 : c̃2qK which

has one less select command and |b̃2| “ n`m´ 1.

Sequence of select commands: We now consider the case where for some b̃, b̃1, c̃, c̃1

s.t. |b̃| “ n and |b̃1| “ m we have a sequential composition of selectpb̃ : c̃q and
selectpb̃1 : c̃1q. We first give an intuitive reasoning for this case: we can expand
this term by applying the post-composition rule and we get a new command of
the form selectpb̃ : pc̃; selectpb̃1 : c̃1qqq and by (recursively) applying these rules
we can obtain a new command such that Jselectpb̃2

i : c̃2
i qK “ Jci; selectpb̃1 : c̃1qK

for each i “ 1 . . . n, thus allowing us to apply the rule for nested selects to each
of the n branches, successfully producing a single select command.

We now consider the case where selectpb̃ : c̃q is in normal form, in order to
get an explicit formula to rewrite these terms we observe that:

Jselectpb̃ : c̃q; selectpb̃1 : c̃1qKS “
m
ď

j“1

Jc1
jKJb

1
jK

n
ď

i“1

JciKJbiKS

which by additivity of J¨K can be rewritten as
Ťm

j“1

Ťn
i“1Jc

1
jKJb1

jKJciKJbiKS.

Deciding program properties via complete abstractions on bounded domains 19

Since we are in normal form, then the vector c̃ does not contain any select
command and each of its entries is either wK or a composition of assignments
and skips.

We now consider the case where ci “ wK and we notice that the corre-
sponding terms are

Ťm
j“1Jc

1
jKJb1

jKJwKKJbiKS “
Ťm

j“1JwKKJbiKS “ JwKKJbiKS by
definition of wK.

When considering any other ci ‰ cj , then ci converges for any input since it
consist of a composition of assignments and skips, thus the corresponding term
can be rewritten as

m
ď

j“1

Jc1
jKJb

1
jKJciKJbiKS “

m
ď

j“1

Jc1
jKJciKJb

1´ci
j KJbiKS

Since ci is always terminating, by Lemmas 24–25 the sets b1´ci
j form a partition-

ing of Σ. Thus we conclude that the sets b1´ci
j X bi form a partitioning of bi.

The assumption we made on selectpb̃ : c̃q being in normal form can always
be achieved, since by these rules we can always rewrite in normal form the
innermost select constructs first and proceed our way merging them with the
outer ones (a more detailed proof of how we can reduce every Select program to
normal form is given in Lemma 30). We thus conclude that every composition of
two select commands can be substituted with a single select command having
a branching factor less or equal than nm (equality holds when no wK appear).

Successive applications of the above rewriting rules give us an effective way
to reduce every Select program to a normal form, in fact:

Lemma 30. Every Select command c can be reduced in normal form using the
above rules.

We note that the reduction procedure is guaranteed to terminate, therefore
giving an effective procedure to obtain a SNF. We also introduce some auxiliary
rules which are not necessary in order to reach a normal form but which could
help in simplifying some program structures:

Select branch pruning: If we have a command of the form selectpb̃ : c̃q such that
there exists bi for which JbiK “ JffK, then we can drop the corresponding branch
by removing both bi and ci from b̃ and c̃.

Select branch merging: If we have a command of the form selectpb̃ : c̃q such
that there exist two indexes i ‰ j and JciK “ JcjK we can safely merge the

two branches by removing bj and cj from b̃ and c̃ respectively and updating
bi “ bi _ bj .

Select removal: This rule is dual to the select introduction one: every command
of the form selectpxby : xcyq (thus having branching factor 1) can be rewritten by
removing the select construct as JcK; this follows directly observing that since
tbu forms a partitioning then JbK “ JttK and by expanding the definition.

20 Roberto Bruni, Roberta Gori, and Nicolas Manini

Newly introduced guards: We now examine the new guards which are introduced
by the aforementioned manipulations, let a P A be an arithmetic expression and
b, b1, b2 P B be guards in the program we are rewriting, then the newly introduced
guards will be of the forms:

bra{xs: If we are applying either the rule for pre-composition with an assignment
or that for a sequence of select commands;

b1 ^ b2: If we are applying the rule for nested select commands.
b1 _ b2: If we are applying the select branch merging rule, this guard can be

rewritten as ␣p␣b1 ^␣b2q by means of De Morgan.
tt: If we are applying the select introduction rule.

We now observe that main rules (that is, the non-auxiliary ones) only intro-
duce new guards in the form of bra{xs or b1 ^ b2 and we observe that:

Lemma 31. If Cpb1q,Cpb2q, then the filtering function for b1 ^ b2 is also com-
plete:

This lets us conclude that, under the hypothesis:

Cpaq ^ Cpbq ùñ Cpbra{xsq (5)

the rewriting process we defined to reduce every Select program into normal
form produces new guards by preserving completeness of their filtering functions.
Moreover, if B is closed under syntactical substitution for every a P A to x
and forms a Boolean algebra (i.e. is closed under ^, _ and ␣), then for every
c P SelectpA,Bq its rewritten normal form c1 is such that c1 P SelectpA,Bq.

5.3 Normal Form Scaling in Combined Domains

In order to discuss how the normal form may scale when different abstract do-
mains are combined, we consider the following program p, whose conditions of
termination are not easy to detect.

while x ı2 0 :
x := 5 ∗ x
while x ı3 0 :

x := 2 ∗ x + 1

We can observe that each assignment is complete w.r.t. modulo k congruences
and this allows us to build a complete bounded domain following the approach
of Lemma 15. Given the guards in the program p, the idea is to consider the

sets of predicates M2
def
“ t“x ”2 1”u and M3

def
“ t“x ”3 1”, “x ”3 2”u so that

the predicates in M2 ensure completeness of the outer while-guard and those
in M3 ensure completeness for the inner while-guard. Note that the Boolean
domain BoolpM3q has 16 elements (it is a powerset of four 2-bitvectors) but
only 8 elements are relevant, because the 2-bitvector associated with “x ”3 1”
and “x ”3 2” corresponds to false. In fact BoolpM3q is equivalent to Mod3 and

Deciding program properties via complete abstractions on bounded domains 21

its ascending chains have at most 4 elements. For similar reasons, the resulting
bounded abstract domain BoolpM2 YM3q is 7´ACC, since it is defined as the
powerset over the set of 3-bitvectors corresponding to value assignments for each
of the predicates in M2 and M3.

The result of this paper assures us that we can detect the inputs for which p
terminates by investigating its SNF form obtained considering k “ 7. However,
computing the SNF form of p leads to select form with a quite high branching
factor. Even if we are interested in characterizing the diverging executions only,
the computed SNF will contain several thousands of diverging branches (assum-
ing that the select branch pruning rule is never applied). Also the size of the
guards corresponding to such branches will grow rapidly due to the subsequent
syntactical substitutions. For example, for program p there will be one diverging
branch whose guard is semantically equivalent to “x ”2 1 ^ x ”3 0”, but its
syntactical expression is more complex. This poses a challenge to gaining useful
insight on the program behavior by analyzing the SNF.

We can observe, however, that even if the different branches of the SNF
contain syntactically different guards, the number of such guards that are se-
mantically distinct ones is limited by the number of elements in the abstract
domain (which in the case of the example is at most 32). This allows us to con-
clude that many guards appearing in the SNF will be semantically equivalent.
Moreover, since the guards in any select command are mutually exclusive, we
can be sure that all such redundant guards are indeed semantically equivalent to
false. Of course, the problem to detect such false guards must be entrusted to a
SMT solver that should support an effective SNF reduction tool implementation.
This would allows us to maintain a concise select structure during the rewriting
process.

5.4 Deciding Program Equivalence

The problem of deciding semantic equivalence is defined as, given two programs
c1 and c2, determining whether Jc1K “ Jc2K, that is, the two diverge on the same
set of inputs and for every converging input, they give the same result.

We now present the main idea to solving program equivalence for programs
containing a single variable x. This approach can be straightforwardly gener-
alized to multiple variables by extending our language with a notion of multi-
assignments (i.e. every assignment is defined by a tuple of variable-expression
pairs and its semantics executes every variable assignment at the same time),
but we prefer to keep the notation simpler for the sake of exposition.

The notion of a reduced normal form is as follows.

Definition 32 (Reduced select normal form (RSNF)). We say that a
program c P Select is in reduced select normal form (in short RSNF) if either:

– c is a basic command (that is either wK, skip or an assignment);

– c has the form selectpb̃ : c̃q where every ci is a basic command.

22 Roberto Bruni, Roberta Gori, and Nicolas Manini

We first observe that Select programs in this form do not allow for arbitrary
sequences of assignments and skip to occur either inside (or outside) any select
branch, but every sequence c “ c1; c2; . . . ; c3 of said commands can always be
reduced into either one single skip or one single assignment as follows:

– If for every i it holds ci “ skip, then JcK “ JskipK
– Otherwise, we remove every ci for which ci “ skip and merge the remaining

assignments observing that:

Jx :“ a1;x :“ a2K “ Jx :“ a2ra1{xsK (6)

which follows directly from the definition.

We also note that the process of merging two complete assignments preserves
completeness.

Lemma 33. CpJx :“ a1Kq ^ CpJx :“ a2Kq ùñ CpJx :“ a2ra1{xsKq.

These observations let us conclude that any SNF program can be easily
transformed into RSNF by collapsing every sequence of assignments (and skips)
into one single command, and the procedure is guaranteed to terminate.

More in detail, given any program c P SelectpA,Bq we can compute its SNF
c1 P SelectpA,B˚q where B˚ is the closure of B under ^ and substitution bra{xs
for a P A, then we can rewrite c1 as some RSNF c2 P SelectpA˚, B˚q where A˚

is the closure of A under substitution ara1{xs.
When considering two RSNF programs, proving their semantic equivalence

can be done by observing that (RSNF programs not containing any select con-
struct can be checked as if they contained a single branch):

Lemma 34. Given two RSNF programs c “ selectpb̃ : c̃q and c1 “ selectpb̃1 : c̃1q

such that |b̃| “ n and |b̃1| “ m, then semantic equivalence between c and c1 holds
iff every formula in the set E “

Ťn
i“1

Ťm
j“1 Epi, jq is valid, where Epi, jq is defined

according to:

– If ci “ c1
j “ wK, then Epi, jq “ H

– If ci ‰ c1
j and wK P tci, cju then Epi, jq “ t␣pbi ^ b1

jqu

– If ci “ c1
j “ skip, then Epi, jq “ H

– If tci, cju “ tskip, x :“ au then Epi, jq “ tbi ^ b1
j ùñ a “ xu

– If tci, cju “ tx :“ a, x :“ a1u then Epi, jq “ tbi ^ b1
j ùñ a “ a1u

We can now make use of our previous results to conclude that:

Theorem 35. Let c1 P ImppA1, B1q, c2 P ImppA2, B2q be any two single-
variable programs admitting complete approximation in some (possibly different)
bounded strict abstract domains, then the problem of deciding semantic equiva-
lence between c1 and c2 can be reduced to that of determining the validity of a
set of formulas built by using only Boolean and arithmetic expressions contained
in the closures (by substitution) A˚

1 , A
˚
2 , B

˚
1 and B˚

2 .

Deciding program properties via complete abstractions on bounded domains 23

Proof. By applying the program transformation defined in Section 4, both c1
and c2 can be reduced to some c1

1 P Imp´pA1, B1q, c
1
2 P Imp´pA2, B2q. Those

two programs can then be expressed as Select commands and reduced to SNF by
means of Lemma 30 and further reduced to RSNF as discussed in 5.4. Applying
Lemma 34 completes the proof. [\

In a similar way to what we proposed for Theorem 19 we can apply the
result given in Theorem 35 whenever we want to investigate the decidability
of semantic equivalence between programs: if we are able to exhibit a domain
for each program in which all the guards and assignments are complete, then
we have successfully proven that their equivalence is reducible to checking a set
of guarded statements, which can be done, e.g., by exploiting SMT solvers like
Z3 [17].

Example We consider the following Imp program:

w
def
“ x :“ ´1 ˚ x;while x ă 0 do x :“ 2 ˚ x

In order to reduce w to RSNF we first transform w is SNF. In fact, since it is
complete in Sign we can find an equivalent Imp´ which can be translated into
a select program as:

x := −1 ∗ x ;
select (
x < 0 : x := 2 ∗ x ;

select (
x < 0 : x := 2 ∗ x ;

select (
x < 0 : wK ,
x ě 0 : skip)

x ě 0 : skip)
x ě 0 : skip)

we can now reduce this program to RSNF and obtain:

select (
x ą 0 : wK ,
x ď 0 : x :“ −1∗x)

Now, by taking another equivalent program such as:

i f x ‰ 0 then
x := x + 1 ;
i f x ă 1 then

x := −1 ∗ x + 1 ;
else

while x ď 0 do
x := x − 2 ;

else skip

24 Roberto Bruni, Roberta Gori, and Nicolas Manini

which gets reduced to the following RSNF:

select (
␣(x ď 0) : wK ,
x “ 0 : skip ,
x ă 0 : x :“ −1∗(x+1)+1)

we can reduce the problem of determining their semantic equivalence to that of
proving the validity of the following set of guarded statements:

E “

$

’

’

’

’

&

’

’

’

’

%

␣ppx ą 0q ^ px “ 0qq
␣ppx ą 0q ^ px ă 0qq
␣ppx ď 0q ^ ␣px ď 0qq
px ď 0q ^ px “ 0q ùñ p´1 ˚ xq “ x
px ď 0q ^ px ă 0q ùñ p´1 ˚ xq “ p´1 ˚ px` 1q ` 1q

,

/

/

/

/

.

/

/

/

/

-

Since they are all tautologies, the two programs are equivalent.
The same considerations of Section 4.2 about the applicability of the method

based on Boolean abstractions for deciding termination are straightforwardly
extended to the case of program equivalence.

6 Conclusions

We have investigated the relationship between completeness in Abstract Inter-
pretation and expressiveness of programs, showing that several important prop-
erties become decidable for the class of complete programs in certain domains.
In particular, we have given a notion of bounded domain and we have studied
classes of programs that are parametric on sets of guards and assignments whose
abstract semantics is complete on such domains.

In order to study the expressiveness of this class, we have considered two well-
known problems: program termination and semantic equivalence, which are of
course not decidable in the general case. Our findings seem interesting: as a first
result we have shown that under the above hypotheses the termination problem
becomes decidable for complete programs. This, of course, severely limits the
expressiveness of our class of programs. Then, we defined an intermediate Select
syntax and a notion of inverse semantics in order to derive a set of rewriting rules
for Select programs. Applying such rules gives an effective way to express every
program from our target class in a canonical form that highlights the program
semantics. By further program transformations to the so-called reduced select
normal form we are also able to rephrase the problem of deciding semantic
equivalence to that of proving the validity of a set of formulas constructed using
the original guards and assignments (along with their composition as needed by
normalization), giving an effective procedure to solve the semantic equivalence
problem. We have developed a proof-of-concept Haskell implementation that
has been used to check the program transformations reported in the examples.
The tool takes an input program and the bound k of the abstract domain and
transforms it in (reduced) select normal form. Note that completeness has to

Deciding program properties via complete abstractions on bounded domains 25

be checked beforehand, as the tool just assumes the existence of the bounded
abstract domain.

We have also investigated the applicability of our approach by proposing a
method to compose Boolean abstractions, each one designed for being complete
for all functions and for some guards appearing in the program. The proposed ap-
proach is structural, in the sense that it builds on the functions and guards used
in programs, for which suitable complete bounded domains must be detected.
Here the main limitation is therefore the completeness requirement: although
abstract domains can always be refined to achieve completeness for a given
set of functions [13], it is often the case that this process leads to the whole
(unbounded) concrete domain. On the other hand, once a library of bounded
domains is available, Boolean abstractions could be used to compose them and
make the technique applicable to larger sets of programs.

The process described in this work focused on an imperative language with
standard single-variable assignments, and reduction to normal form has been
defined for single-variable programs only. Considering a more general notion of
multi-assignments x̃ :“ ã (i.e. where multiple variables are assigned simultane-
ously to corresponding expressions) gives a direct generalization of our approach
to programs with more than one variable (observing that every assignment is a
trivial case of multi-assignment). The select normal form we used can be seen as
a star-free fragment of Kleene Algebra with Test (KAT) [15]. In this sense, it is
worth pushing the analogy even further and consider the full KAT instead of Imp
as a reference language, finding suitable conditions under which star expressions
can be equivalently iterated only a bounded number of times.

We think that further studies could be conducted on several aspects, such as
investigating whether weakening the constraint over boundedness of the domain
(that is, when considering ACC domains with finite but not bounded chains)
makes program termination undecidable.

References

1. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for
model checking C programs. In: Margaria, T., Yi, W. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems, 7th International Confer-
ence, TACAS 2001 Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceed-
ings. Lecture Notes in Computer Science, vol. 2031, pp. 268–283. Springer (2001).
https://doi.org/10.1007/3-540-45319-9 19

2. Barringer, H.: A survey of verification techniques for parallel programs. Springer-
Verlag (1985)

3. Bruni, R., Giacobazzi, R., Gori, R., Garcia-Contreras, I., Pavlovic, D.: Abstract ex-
tensionality: On the properties of incomplete abstract interpretations. Proceedings
of the ACM on Programming Languages 4(POPL), 1–28 (2019)

4. Bruni, R., Giacobazzi, R., Gori, R., Ranzato, F.: A logic for locally com-
plete abstract interpretations. In: Proceedings of LICS 2021, 36th Annual
ACM/IEEE Symposium on Logic in Computer Science. pp. 1–13. IEEE (2021).
https://doi.org/10.1109/LICS52264.2021.9470608, distinguished paper

https://doi.org/10.1007/3-540-45319-9_19
https://doi.org/10.1109/LICS52264.2021.9470608

26 Roberto Bruni, Roberta Gori, and Nicolas Manini

5. Cousot, P.: Principles of Abstract Interpretation. MIT Press (2021)
6. Cousot, P.: Abstract interpretation based formal methods and future challenges.

In: Informatics. pp. 138–156. Springer (2001)
7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages. pp. 238–252 (1977)

8. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages. pp. 269–282 (1979)

9. Cousot, P., Cousot, R.: Basic concepts of abstract interpretation. In: Building the
Information Society, pp. 359–366. Springer (2004)

10. Das, M., Lerner, S., Seigle, M.: Esp: Path-sensitive program verification in polyno-
mial time. In: Proceedings of the ACM SIGPLAN 2002 Conference on Program-
ming language design and implementation. pp. 57–68 (2002)

11. Dijkstra, E.W.: A discipline of programming. Series in automatic computation,
Prentice-Hall (1976)

12. D’silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 27(7), 1165–1178 (2008)

13. Giacobazzi, R., Ranzato, F., Scozzari., F.: Making abstract interpre-
tation complete. Journal of the ACM 47(2), 361–416 (March 2000).
https://doi.org/10.1145/333979.333989, https://doi.org/10.1145/333979.

333989

14. Giacobazzi, R., Logozzo, F., Ranzato, F.: Analyzing program analyses. ACM SIG-
PLAN Notices 50(1), 261–273 (2015)

15. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),
427–443 (May 1997). https://doi.org/10.1145/256167.256195, https://doi.org/
10.1145/256167.256195

16. Miné, A.: Tutorial on static inference of numeric invariants by abstract interpreta-
tion. Foundations and Trends in Programming Languages 4(3-4), 120–372 (2017)

17. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3 24

18. Nelson, C.G.: Techniques for program verification. Stanford University (1980)
19. Nielson, F., Nielson, H., Hankin, C.: Principles of Program Analysis. Springer

(2010). https://doi.org/10.1007/978-3-662-03811-6, https://doi.org/10.1007/

978-3-662-03811-6

20. Rice, H.G.: Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society 74(2), 358–366 (1953)

21. Rival, X., Yi, K.: Introduction to Static Analysis – An Abstract Interpretation
Perspective. MIT Press (2020)

22. Turing, A.M.: On computable numbers, with an application to the entschei-
dungsproblem. A correction. Proceedings of the London Mathematical Society
2(1), 544–546 (1938)

https://doi.org/10.1145/333979.333989
https://doi.org/10.1145/333979.333989
https://doi.org/10.1145/333979.333989
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6

Deciding program properties via complete abstractions on bounded domains 27

23. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proceedings of the First Symposium on Logic in Computer Science.
pp. 322–331. IEEE Computer Society (1986)

	Deciding program properties via complete abstractions on bounded domains

