
Complete Abstraction
 on Bounded Domains

 more form
ally...

Execute an abstract approximation
of the concrete semantics

DOMAINS:

AbstractConcrete

<0 ≥0

tt

ff

POSSIBLY
INFINITE

START

if x < 0:
	 x <--2x
else:
	 x <-x+1
return x

Can the
output be
negative?

INTUITIVELY:
Group possible inputs by abstracting

on relevant properties only

if x < 0:
	 x <--2
else:
	 x <-x+1
return x

x negative:
<0

<0>0

>0

if x < 0:
	 x <--2x
else:
	 x <- +1
return x

x positive: (or zero)

≥0

>0 ≥0
>0

Abstract
 Interpretation?

parametrized by

THE IDEAL SCENARIO: A COMPLETE ABSTRACTION

Executing the
abstract semantics

Abstracting the
concrete output= !!!

B
A

C
K

G
R

O
U

N
D

If the HEIGHT of a domain
is ≤ than some constant k
the domain is BOUNDED

(length of the longest chain)

OUR CONTRIBUTION:

...an example

 T
HE

 ID
EA

The
“tricky” parts

of the semantics
are the fixpoint
computations

Kleene Fixpoint Th.

Computing fixpoints
is done by following
an ascending chain

in the domain

...but! all chains in a bounded domain are “short”

**

*
analyzing properties on the
abstract semantics becomes easy
we can decide program termination
of the abstract semantics
(hint: we can remove while loops)

e.g.

+ Completeness allows us to move our analysis back to the concrete semantics.

Full Paper?

 T

H
E

 R
ESULT

If a program
admits a complete
abstraction on a
bounded domain

we can decide
its termination

then

R. Bruni, R. Gori, N. Manini (Static Analysis Symposium, SAS 2022).
“Deciding Program Properties via Complete Abstractions on Bounded Domains”.

!!!!!!(more in the full paper)

...a
nd so?

Allows us to reason about the power and
tradeoffs of complete abstractions.

Establishes a parallel between expressivity
classes and domain topologies.

for details, and more :

{0}{-1} {1}

{-1,1} {0,1}{-1,0}

{}

ℤ

doi.org/10.1007/978-3-031-22308-2_9

